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Introduction
The desakota land use pattern that is characteristic of Southeast Asia, China, and other rapidly

urbanizing regions is notable for its urban-rural ambiguity.  Figure 1 re-presents the classic

depiction of this peri-urbanization pattern as introduced by Terry McGee (1991).  While much

work has been done by urban geographers to understand and to document this phenomenon, less

has been accomplished by way of systematic measurement of peri-urbanization.  Indeed, the very

nature of the phenomenon defies ready categorization and measurement and renders conventional

measures obsolete.

Figure 1: McGee’s desakota

This paper addresses the measurement issue by drawing on the mathematical formulation of

fuzzy sets.  A fuzzy set is one for which the degree of membership for any element of the set may

range from zero to one, and so is well suited to ambiguous or partial membership.  In our context

we are interested in fuzzy urban sets, the constituent parcels (or pixels) of which may exhibit

varying degrees of inclusion.  The fuzzy set formulation is a very natural one for desakota

settings, and it is easy to envision, for example, how the degree of membership in the fuzzy urban

set U may vary from one location to the next in figure 1.  In contrast, conventional (or “crisp”)

sets, for which all elements are constrained to have full membership, seem ill-suited to desakota

settings, as would be any crisp rendering of a peri-urbanizing territory into two discrete mutually

exclusive and non-overlapping subsets, urban and rural.
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The use of fuzzy sets here is consistent with that of fuzzy classification methods that are

increasingly used in remote sensing to allow pixels to retain some degree of membership in one

or more land use classes (see, for example, Campbell, 1996, Chapter 11).  We go further by

focusing on the nature of the implied fuzzy urban set itself.   Stated another way, fuzzy

classification methods focus on the remote sensing technique used to ascertain degrees of

membership for each pixel, whereas our focus is on the representation and description of

desakota regions as fuzzy sets.

Our approach leads to three distinct yet integrated measures of urbanization for any given study

area:

i. extent of urbanization -- the aggregate level of membership in the fuzzy set U;

ii. level of fuzziness --  the overall degree of ambiguity regarding membership in U;

iii. degree of entropy – uniformity of membership in U.

Characterizing (remote sensing images of) urbanizing regions as fuzzy urban sets provides a

single integrated perspective from which these three distinct measures are simultaneously

defined.  As we shall see, previous work by Bart Kosko (1997, 1992) provides a convenient and

conceptually imaginative framework for this approach.

The next section of this paper indicates the focus of this work in the broader context of research

on urbanization in China and elsewhere.  Although the proposed method has relevance to other

regions, China provides both the motivation for this work and the setting for this particular

application.  Section three explains the relevance of fuzzy set formulations for characterizing

peri-urban systems, and goes on to show how Kosko's (1997, 1992) depiction of a fuzzy

hypercube lends itself very naturally to the derivation of three relevant measures, all derived from

a single conceptual framework.  Section four demonstrates the feasibility of the proposed

approach using 1987, 1990 and 1996 remote sensing images of Ningbo City, in China's Zhejiang

Province.  The concluding section discusses theoretical and practical issues that will need to be

addressed if the proposed method is to be adapted to regular use.

Broader context of urbanization in China
Figure 2 depicts the contribution of this paper in the broader context of research on urbanization

in China.  It is helpful in understanding both what the contribution is and what it is not.  There are
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four elements identified in figure 2; each corresponding to a particular facet of urbanization as a

field:

[1] China urbanization as a desakota geographic phenomenon

[2] remote sensing images of this phenomenon

[3] summary statistics about urbanization

[4] dynamic models of urbanization

Each of these is an area of study unto itself.   Regarding the study of desakota urbanization as a

geographic phenomenon [1], McGee's desakota descriptive model has been extended to the

Chinese context by Zhou Yixing (1991), Yok-Shiu Lee (1991) and Guldin (1997).  Similarly,

Zhou Daming (1997) attempts to resolve the urban-rural dichotomy issue by outlining a

descriptive model of "rural urbanization in China".  The references above focus specifically on

documenting and describing the desakota phenomenon in the Chinese context.  There is also a

voluminous literature addressing other aspects of urbanization in China but that is beyond the

scope of our immediate focus.

Geographic
Phenomenon

Remote
Sensing Image

Summary
Statistics

Dynamic
Model

The primary focus of this paper is on [2 à3] above

4

3

1

2

Figure 2: Context of contribution

Much work has also been done in the interpretation of remote sensing sensing images of

urbanization, a focus that may be represented as [1 ‡2] in the context of figure 2.  Remote

sensing image data have been used to detect land use change in China by Yeh (2001) and by Li

and Yeh (1998) applying and extending methods introduced by Howarth (1986) and by Mesev,

Longley, Batty, and Xie (1995).  The [1‡2] designation also includes fuzzy classification
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techniques as applied to the production of remote sensing images.  As noted earlier, the method

proposed in this work takes a remote sensing image as its starting point and develops summary

statistics derived from those data.  In the context of figure 2, therefore, our focus is on [2 ‡3]

rather than [1‡2].

In this regard, our work has a similar focus to Anthony Yeh's (2001) recent application of entropy

measures derived from remote sensing data to analyze urban growth in the Pearl River.  Our work

differs from Yeh's primarily with regard to the fuzzy set representation and interpretation of data,

and also with regard to our simultaneous derivation and presentation of three urbanization

measures derived from a single conceptual framework.  As this [2 ‡ 3] segment is the immediate

object of our inquiry we shall save a more in-depth discussion of this topic for the next section.

More often, summary statistics about urbanization are derived without reference to or mediation

by remote sensing image data.  In the context of figure 2 we represent such efforts to summarize

urbanization levels as a direct [1 ‡ 3] path, rather than the indirect [1 ‡ 2] & [2 ‡ 3].  Most

typical of such efforts are jurisdiction-based approaches that seek to define urban or rural

territories or population based on the jurisdictions in which they are located.  In essence, this

approach defines urban territory (or population) as territory (or population) found within urban

jurisdictions.  Although this circular reasoning is highly unsatisfactory from a theoretical

perspective, it is the most common source of official statistics available on urbanization, and it

reflects an administrative orientation that is pre-occupied with fiscal and governance issues.

These are certainly important issues, but for our purposes a fixation on jurisdictional boundaries

tends to obfuscate the nature of the underlying geographic phenomenon.

This is not only a problem in China.  The United States Census1, for example, also defines the

urban-rural dichotomy in circular terms (our emphases below):

"Urban" consists of territory, persons, and housing units in:

• Places of 2,500 or more persons incorporated as cities, villages, boroughs (except in
Alaska and New York), and towns (except in the six New England States, New York, and
Wisconsin), but excluding the rural portions of "extended cities".

• Census designated places of 2,500 or more persons.

• Other territory, incorporated or unincorporated, included in urbanized areas.

                                                       
1 The definition is found in U.S. Census Bureau, Urban and Rural Definitions, October 1995.



page 6

Territory, population, and housing units not classified as urban constitute "rural".

While that definition may be functional at the level of Census Bureau operations, it does not shed

light on the geographical phenomenon we are addressing.  Equally unsatisfactory for our

purposes is the standard textbook definition: "To an urban economist, a geographical area is

considered urban if it contains a large number of people in a relatively high population density"

(Sullivan, 1990, p.6)  In both instances, place is given a priori, usually in jurisdictional terms,

whereas our approach seeks to uncover urban places inductively and empirically.

The challenge in China is no less vexing, as evidenced by Gregory Eliyu Guldin's (1992, p. 5)

plaint:

"Never mind then that Rong Ma … makes a convincing argument for the superiority of a

sociological view of urban community as the key to defining towns or that Kam Wing Chan

argues against simplistic [dichotomous] categories.  Forget that Ma and others … have

pointed out the anomolies of the "town" (zhen) classification and its relationship to the

varieties of county, district (qu), xiang and village towns, so the the "town" as encountered in

Chinese statistical tables is neither an unchanging category nor a sociologically accurate one.

Forget too that Clifton Pannell …, Graham Johnson …, and I argue that there are far too

many interconnections among all areas of Chinese society simply to bifurcate the society into

"rural" and "urban" spheres.  Forget all these arguments for social scientifically-based

categories or understandings, for in the end all of these must yield to the statistical tables of

the State Statistical Bureau and its categories."

Thus, in both the United States and in China, the official state statistics used to record levels of

urbanization are fixated on exogenously determined place boundaries, and those places are then

classified as either urban or rural based on varying criteria.  While such jurisdictional boundaries

are of course necessary for effective administration of territories, they are no substitute for (and,

indeed, tend to obscure) a direct examination of the underlying geographic phenomena associated

with peri-urbanization.

Summary or descriptive statistics of urbanization are not so much ends in themselves; rather, they

provide important feedback for land use planners and other decision-makers who may seek to

intervene in ways that might generate more favorable future outcomes.  Li and Yeh's (1998) and

Yeh and Li's (1999) research on the Pearl River Delta region are representative of studies that

generate summary statistics from remote sensing data to monitor land use change.  This is a direct
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[2 ‡ 3] link in terms of figure 2, with an implicit [3 ‡ 1] feedback link to policies regulating the

form and extent of urban development.  Other works develop and apply dynamic models to

complete the feedback loop more explicitly.  Zhou and Ma (2000), for example, use summary

data to support a descriptive model of economic restructuring and  suburbanization in China.  In

the context of figure 2 their work is best represented by [4 ‡ 1] supported by [1‡3] & [3 ‡ 4],

as is the work by Zhai and Ikeda (2000).  The latter adapt a mathematical ecology model with

differential equations that are fed by summary data on urban land use density and other ecological

indicators.  Another interesting variant of dynamic model is the cellular automatum as applied to

urbanization by Batty and Xie (1994) and as applied to the Chinese urbanization context by Li

and Yeh (2000).  Cellular automata are fed directly by raster data, thereby bypassing the need for

summary statistics and so can be represented in figure 2 by [4 ‡ 1] supported directly by [1‡2]

& [2 ‡ 4].

The brief sketch above by no means substitutes for a comprehensive review of China urbanization

studies.  It is, nonetheless, useful for clarifying where our particular contribution fits in within the

larger scheme of things.  Specifically, we focus on the link between [2 ‡ 3] as supported by

[1‡2], to produce a meaningful set of summary statistics derived from remote sensing data of

peri-urbanizing regions.  We argue that such remote sensing images may be interpreted as fuzzy

set data that reflect an underlying process of fuzzy urbanization, and we turn now to a more

detailed description of the method by which such summary data may be derived.

Fuzzy urban sets

Fuzzy urban sets

Consider the set U and all possible members of U,  xi ŒX, drawn from some universal set X,

where  i Œ N = {1, 2, …, n}.  In classical set theory, membership in U is unambigously or

"crisply" defined so that any element xi of the universal set X is either a full member of U, or not

a member at all.  This bimodal characteristic of crisp sets is reflected in a membership function

for U,  mU( . ),  that only admits two possible values, zero or one:

(1) ui  _  mU(xi)  Œ  {0,1}   "i Œ N

For many purposes, including our own, this classical bimodal set membership function is

unnecessarily restrictive, and so this motivates the introduction of fuzzy sets.  Zadeh (1965)
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accomplished this simply by extending the membership function to map from X to the entire unit

interval, so that

(2) ui  _  mU(xi)  Œ  [0,1]   "i Œ N

where equation 1 is now a special limiting case of equation 2.  Fuzzy sets allow a continuum of

membership values while crisp sets allow only for the two most extreme possibilities: full

membership or no membership at all.

Now, consider a remote sensing image such as the one shown in figure 3, where each pixel xi of

the image corresponds to a particular parcel (or plot, or chunk) of land, and where the set X

corresponds to the image as a whole, or more precisely, to the union of all individual parcels xi.

For each parcel we may in principle assign a degree of membership in the fuzzy urban set U in

accordance with the membership function described in equation 2.  As will be explained below,

the shades of gray in figure 3 represent the degree of membership thus assigned, with white

representing full membership and black representing no membership, and with all shades of gray

corresponding to a spectrum of values between these two extremes.  The resulting set U (and by

implication, its rural complement R) is “fuzzy” in the sense that the classical yes-no membership

dichotomy now dissolves into a question of degree or extent – as with desakota regions.

Figure 3: Remote sensing image of Ningbo City

In graphical form, the extension from crispy to fuzzy sets is represented in figure 4, where in this

illustration the reference set X (from which all member pixels xi are drawn) is a real line
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representation of a 1-D geographical space.  Here, the urban-rural dichotomy is transformed into

a fuzzier notion of urbanity, where the height of the membership function determines the extent to

which a given location xi is a member of the set of all urban locations.  If we take ui = 0.5 as the

threshold or cutoff point2, then a "crisp" categorization of the space in figure 4 would result in the

two crisp urban sets (and by inference, the three crisp rural sets) shown.  The urbanized world of

today is a crisp one, according to officials statistics on urbanization.  The approach advocated

here recasts the urban-rural dichotomy in fuzzy terms, with crisp sets as an extreme limiting case.

0.5

Figure 4: One dimensional urban sets (fuzzy and crisp)

This adjustment is significant for several reasons.  First, it enables us to introduce ambiguity of

land use classification formally and precisely.  Fuzziness does not imply imprecision; rather, it

implies a more precise way of handling ambiguous land use patterns.  Fuzziness is intrinsic to the

underlying desakota phenomenon that is being described3.  Second, it allows us to draw upon and

apply work done by Zadeh (1965), Kosko (1997) and others who have contributed to fuzzy set

theory, even though their work would appear at first glance to be quite far removed from issues of

urbanization in China.  For example, let the rural set R be defined as the complement of the urban

set U, that is R  _  Uc.   In the case of crisp sets, the intersection of any set with its complement is

null:

                                                       
2   That is, xi is a member of the crisp urban set U whenever ui _ m(xi) > 0.5.
3   Put another way, it is the logic of fuzzy sets, not the fuzzy logic of sets.  (This distinction is not
recognized in the title to Heikkila’s “Fuzzy Logic of Accessibility” paper.)
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(3) U _ Uc  =  U _ R  =  Ø

For fuzzy sets, though, this result no longer applies, and this is potentially significant for how we

organize land use data.  As another example, Kosko (1997) shows how familiar terms such as

entropy can be recast in terms of fuzzy set operations, and we allude to his result in the section

that follows.  Third, and of most direct import for this paper, casting peri-urbanization patterns as

fuzzy urban sets leads directly to the use of three fundamental dichotomies for characterizing

urban-rural systems.

Three fundamental dichotomies of fuzzy urban sets

In a recent paper Heikkila (2000) applies Bart Kosko's (1992) notion of a fuzzy power set to

develop three fundamental dichotomies in the context of accessibility4.  We adapt those same

dichotomies here as fundamental descriptors of fuzzy urban sets.  The three dichotomies are best

understood in the context of Kosko's (1992) graphical depiction of a fuzzy power set, which is

depicted here in figure 5.  Consider the universal reference set X = {x1, x2, … xn}, which in our

case refers to the set of pixels in a remote sensing image, and so n is a very, very large number.

Now consider the power set of X, denoted by 2X, which contains all crisp subsets of X.  For

example, in the three-dimensional case (n=3) which is depicted in figure 5,

(4) 2X = {∅, {x1}, {x2}, {x3}, {x1,x2}, {x1,x3}, {x2,x3}, X}

These elements of 2X (which are themselves sets) constitute the vertices of an n-dimensional

hypercube such as the one in figure 5.  This hypercube (including its interior) is the fuzzy power

set of X.  Where the crisp power set is a zero-volume lattice-work of points in n-space, the

corresponding fuzzy power set is full-volumed. All points contained within or on the frame

defined by the power set represent the universe of possible fuzzy sets for the reference set X.

Using this representation, following Kosko (1997), the fuzzy urban set U can be depicted as a

                                                       
4  In "Fuzzy Logic of Accessibility", geographical accessibility is cast as a special case of membership in
fuzzy clubs, which in turn are extensions of Tieboutian municipalities.  Please refer to Heikkila (2000) for a
more extensive discussion.
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point within a fuzzy hypercube.   Its location with respect to each vertex is specified by the

corresponding membership value.  For example, in figure 5 the coordinates of U are given as5:

(5a) u1  =  mU(x1)

(5b) u2  =  mU(x2)

(5c) u3  =  mU(x3)

M = (0.5,0.5,0.5)

U

u1

u2

O = (0,0,0)

I = (1,1,1)

Figure 5: Kosko’s fuzzy hypercube

At this juncture it is useful to pause and consider the situation depicted in figure 5.  By

representing a desakota region (or its encapsulation in a remote sensing image with n pixels) as a

fuzzy urban set U , we can then map U into a single point within Kosko’s fuzzy hypercube of

dimension n.  The key to our approach at measuring urbanization is addressed through a simple

question: where does this single point representation of the fuzzy set U lie within the fuzzy

hypercube that contains all possible fuzzy urban sets of dimension n?  Looking at figure 5, three

aspects of U’s location immediately present themselves:

i. How far is U from the origin ∅?

ii. How far is U from the midpoint M?

iii. How far is U from the principal diagonal [∅_I ]?

                                                       
5   Here, for obvious reasons, our rendering of the fuzzy hypercube is limited to three dimensions, which in
turn corresponds to a remote sensing image of only three pixels.  The reader is asked to bear in mind at all
times that our discussion is geared to the n-dimensional case where n is very large.
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The answers to these three very straightforward locational questions in the context of figure 5

relate directly and intuitively to three corresponding measures of urbanization that when taken

together are especially well suited to characterizing desakota phenomena.  Expanding upon

Heikkila (2000) and Kosko (1997), we characterize the location of the fuzzy urban set U  in terms

of three fundamental dichotomies as summarized in table 1:

Table 1:  Three fundamental dichotomies of fuzzy urban sets

Nature of the
dichotomy

Geographic
interpretation

Fuzzy set interpretation Geometric  interpretation
(figure 5)

Urban-rural Aggregate level of urbani-
zation for the study area

Measure of the cardinality of
the fuzzy set U

Urban-ness increases with
distance from the origin;
maximum urban content at I.

Fuzzy-crisp Extent of desakota
phenomenon

A measure of the fuzziness
of the set U

Fuzziness decreases with
distance from midpoint M, zero
fuzziness at the vertices.

Entropy-order Diffusion of urbanization
process

Uniformity of membership
of the set U

Maximum entropy along central
diagonal; zero entropy at base
vertices.

Urban-rural dichotomy.  This is a measure of the aggregate level of urbanization for the sample

area.  As such, it corresponds most closely to conventional or official statistics measuring

urbanization.  A key difference, however, is that each parcel (or pixel) may in principle be

partially urbanized.  Thus, for example, a study area of one hundred parcels that is sixty percent

urbanized may comprise:

a) sixty urban parcels and forty rural parcels, or

b) one hundred parcels, each of which is sixty percent urban and forty percent rural, or

c) any convex combination of (a) and (b).

Conventional measures, such as those based on the Census definitions reported earlier, only allow

for type (a) distinctions, where any given place is either urban or rural but not both.

As noted earlier, the vertex I in figure 5 corresponds to a system that is completely urbanized

(each pixel, xi, is a full member of the set U).  At the other extreme, the vertex ∅ corresponds to a

completely rural system, where each pixel is a full member of R = Uc, defined as the complement

of U.  In the context of figure 5, therefore, the urban-rural dichotomy is measured in terms of the

distance of U from ∅.  This measure is operationalized most simply by taking the mean value of
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U's base vectors, the resultant value of which is automatically normalized to the zero-one

interval6:

(6) A(U)  _  Si ui / n

Fuzzy-crisp dichotomy.  This interpretation is rooted in the potentially ambiguous nature of

fuzzy set membership and, as has been explained above, corresponds most directly to the

fuzziness or ambiguity inherent in desakota land use patterns.  The height of ambiguity (ie,

maximum fuzziness) occurs at the midpoint M in figure 5 where each parcel of land has a 0.50

degree of membership in the urban set U and a 0.50 degree of membership in the rural set R.  In

contrast, each vertex of the fuzzy power set corresponds to one of the crisp subsets of X.

Conventional methods for measuring urbanization restrict our possibilities to the vertexes alone,

while the approach proposed here opens up the interior spaces as well, all of which retain some

degree of fuzziness.  In the context of urbanization, the midpoint M in figure 5 corresponds to the

ultimate desakota condition, where urban is rural and where rural is urban.  The complement Uc

of a perfectly fuzzy urban set is a perfectly fuzzy rural set.7  Kosko (1997) operationalizes this

measure of fuzziness8 using fuzzy set operators:

(7) F  =  c[U _ Uc] / c[U  U Uc]

where c(U) = Si _ui_ is a measure of the count or cardinality for a set, and where the intersection

and union of two fuzzy sets are given by the pairwise minima and maxima, respectively.  Note

that when U is crisp (corresponding to any of the vertices in figure 5), fuzziness drops to zero

while fuzziness equals one at the midpoint.

Entropy-order dichotomy.  Any point along the principal diagonal of the fuzzy hypercube in

figure 5 represents a state of perfectly uniform diffusion of urbanization throughout the study

area.  The opposite state would be one of complete concentration whereby all urbanization is

concentrated in a single spatial unit.  In terms of figure 5, the perfect concentration case

corresponds to one of the base vectors: (1,0,0), (0,1,0), or (0,0,1).  These base vectors provide the

                                                       
6  Another alternative would be to take the root mean square of the base vector values.
7  Here we are using the term “rural” as an all-encompassing “non-urban” category.
8  Kosko (1997) refers to this measure of fuzziness as fuzzy mutual entropy.  See text below for further
discussion.
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sharpest angle away from the principal diagonal.  All other points within the fuzzy cube –

including (1,1,0), (1,0,1), and (0,1,1) – correspond to some intermediate level of concentration or

dispersion.  It is clear, therefore, that the principal diagonal corresponds to perfect diffusion, and

that the angle away from this diagonal is a measure of spatial concentration.

Batten (1983, chapter 2) provides a clear-sighted review of the concept of entropy and its

applications to spatial analysis.  Ironically, the very meaning of “entropy” has become highly

diffused among myriad applications and interpretations.  For our purposes, the specific measure

of entropy we use evolves from the work of C. E. Shannon (1948) and Henri Theil (1967).   Theil

adapted  Shannon’s entropy statistic for use as an inverse measure of industrial concentration.  A

similar measure was quickly adapted for use by geographers intent on measuring the degree of

concentration for spatial phenomena.

In the context of urbanization studies entropy measures the dispersion of observed urban

development patterns.  For example Yeh (2001), in his recent study of urban sprawl in the Pearl

River Delta region of Southeast China, uses Theil’s entropy measure as modified by Thomas,

(1981).

(8) E  =  Si pi log(1/pi) / log(n)

where pi  measures the proportion of development occuring in a particular zone.  For our purposes

pi = ui / Si ui .
9  This measure of entropy reaches its maximum of one when development is

uniformly distributed across the study area (so that pi = 1/n,  "i Œ N), and it is minimized at zero

when all development is concentrated in one location j (so that pj = 1, and pi = 0, " i ≠ j ).  Thus,

in the context of figure 5, the central [∅ - I] diagonal represents perfect entropy (E=1), and

entropy decreases with the angle away from this central diagonal, with zero entropy occuring at

any of the base vertices.

Notwithstanding its similar mathematical structure, the spatial concentration measure above

differs from another another entropy measure rooted in information theory and originating from

Shannon (1948).  From the information theory perspective, each pixel contains a signal, and

                                                       
9   Yeh uses density of development as the underlying variable.  From our perspective, development density
is a reasonable basis for measuring membership in U, and so the two approaches are basically consistent.
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Shannon’s entropy statistic S measures the information content of a set of signals10.  If all pixels

contain the same signal, S is zero.  This is precisely contrary to the interpretation commonly used

in studies of geographic dispersion as discussed above, and this has no doubt contributed to

general confusion about the use of the term “entropy”.  Both Shannon’s information statistic S

and the geographic disperson statistic E used here are measures of dispersion.  The key distinction

is that the geographic measure of entropy is concerned with dispersion over spatial units while

the information statistic is concerned with dispersion over the potential range of signals.

Thus, we note that entropy in a spatial dispersion context has a distinct interpretation.  Indeed,

Batty (1974) introduced a measure of spatial entropy to accommodate the discrete nature of

space.  Batty’s measure incorporates a term Dxi which provides a measure of the interval over

which the corresponding probabilities are defined.  Thus, we have

(9) B  =  - Si pi log(pi/Dxi) / log(n)

In our case, each pixel is of the same size, and so Dxi = Dx  for all i.  In this case B reduces to

(10) B  =  log(Dx)/log(n) + E

and so the additional term becomes a non-varying shift operator.  As noted by Shannon (1948)

and others, a measure of entropy is arbitrary subject to any tranformation that preserves order, so

we are free to choose spatial units as we please.  As each pixel is a standardized spatial unit, a

logical choice is Dx = 1, in which case Batty’s spatial entropy measure reduces to the one we are

using.  In applications where spatial units may vary, it will be important to replace equation 8

with equation 9.

A final observation regarding entropy before we move on.  As noted in footnote 7 above, Kosko

presents a measure of fuzzy mutual entropy that is different yet again from any of the entropy

measures discussed thus far.  His is derived from Kullback’s (1959) measure of information gain

of the fuzzy set U relative to its complement Uc.  Kosko (1997, p. 414) goes on to derive a

relationship whereby “fuzzy mutual entropy equals the negative of the divergence of Shannon

                                                       
10  Shannon’s entropy measure is S = Si pi log(1/pi), which ranges from 0 to log n, hence the normalization
in equation 8.  As noted in the text, the summation operator in Shannon’s measure ranges over all possible
signals, while the summation operator in equation 8 ranges over all spatial units.
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entropy”, and where “we can in principle recover Shannon entropy … from fuzzy mutual entropy

by integrating”.  The interpretation of this relationship in the context of desakota urbanization is

beyond the scope of this paper, except to note that equation 7 is in fact Kosko’s fuzzy mutual

entropy measure11.

What the fuzzy cube hath wrought

Taken as an ensemble, these three dichotomies provide a highly comprehensive characterization

of the status and scope of urbanization for a study area.  Not all of the measures derived from this

conceptual device are new.  For example, the aggregate measure of urbanization defined by

equation 6 corresponds fairly directly to conventional measures.  Even here, however, the

interpretation of the statistic as a measure of cardinality of the fuzzy set U is unique, and

accomodates varying degrees of urbanity within each spatial unit.  Likewise, the measure of

entropy used here is not new, but the fuzzy hypercube context makes clear which entropy

measure is most appropriate for this application.  The fuzziness measure in equation 7 is new to

urbanization studies, however, as it is a direct measure of the fuzziness of the urban set U.  As

noted already, this fills a void in the literature on desakota type urbanization formations.  Over

the past decade scholars have increasingly recognized the significance and extent of this

phenomenon, but have been unable to measure it.  Our approach fills this void.

From a theoretical perspective, the main contribution of the fuzzy urban set formulation is the

introduction of a unifying conceptual framework for measures of urbanization.  This is made

possible by the representation of an entire study area as a single point within a fuzzy hypercube.

Our three measures of urbanization are derived through a very intuitive process of identifying the

location of that point.  Extensions of this conceptual device come readily to mind; for example,

one may envision the evolution of a study area over time in terms of the trajectory described by

the fuzzy set U as it moves within the confines of the fuzzy hypercube that contains it.  A focus

for research on urban development would then be to articulate an understanding of how fuzzy

urban sets evolve in this context.

                                                       
11 Our geometric interpretation also is indicative of a relationship between these two distinct measures of
entropy – F (Kosko’s fuzzy mutual entropy) and E (Shannon’s entropy) – given the aggregate extent of
urbanization, A. E is a measure of the angle away from the principal diagonal.  A is a measure of the
distance from the origin.  Taken together they tell us how far away we are from the midpoint, and that in
turn is a measure of F.
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Application to Ningbo, China
We contend that the three measures operationalized in equations 6, 7, and 8 provide a

comprehensive set of urbanization statistics well suited to measuring, monitoring, characterizing,

and comparing fuzzy urban sets.  As remote sensing data become increasingly available

urbanization researchers will become less dependent upon jurisdiction-bound statistics that are ill-

suited to conveying the contours of desakota phenomenon, and so we envision significant scope

for widespread adaptation of this approach.  Moreover, as the volume of remote sensing data

increases, the need for meaningful summary statistics will become more acute.  Our approach

responds directly to that need.

To test the feasibility of our proposed method and approach we turn now to a pilot application.

The study area we have selected is Ningbo City, Zhejiang Province, in eastern China south of

Shanghai.  Ningbo is an active port area and an industrial center on the Yong River.  Located in a

fertile agricultural region, it is well known for its rural industry.12  This case study was selected in

part because of the rapid and diffuse patterns of urbanization found there and, in part, because of

data availability.

Generating membership values for the fuzzy urban set U

Recall from our discussion of figure 2, that the starting point for our method is the remote sensing

image.  Of course, in practice, considerable effort is required to reach the starting point.  The

basic issue is how to generate a gray-scaled membership value ui for each pixel i, indicating it’s

degree of membership in the fuzzy urban set U.  The method described in the preceeding pages

presumes the existence of these membership values and proceeds forward from there.  Indeed,

this paper makes no claim of any original scholarly contribution regarding the interpretation of

remote sensing images.  Instead, we use fairly conventional remote sensing image classification

methods to move from [1 ‡ 2].   This section briefly describes the process by which we

generated a set of membership values ui for the fuzzy urban set depicted in figure 3.

Remote sensing data are generated by measuring the percentage reflection of electromagnetic

radiation across selected spectral bands from the electromagnetic spectrum.  Remote sensing data

sample three discrete spectral bands, and so each pixel in our dataset has a (percentage reflection)

datum associated with each of the three bands.  Our test case uses Landsat TM2, TM5, and TM7

                                                       
12 See http://www.ningboport.com/
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bands for three points in time; 1987, 1990, and 1996; each with 30m x 30m resolution and a 350

x 312 pixel image.  As with most remote sensing applications, our approach is geared to

interpretation of land cover.  Of course, the extent to which a spatial unit is urbanized will be

determined by other considerations beyond land cover.  Factors such as population density,

building heights, or interaction variables are often cited.  Increasingly, therefore, remote sensing

applications are being integrated with GIS in order to incorporate such considerations.  We do not

do so here for two reasons.  First, our intent is to demonstrate the feasibility of moving from [2 ‡

3], in the context of figure 2 for a given set of membership values.  For this purpose, any

reasonable set of membership values ui will suffice.  Secondly, we envision that our proposed

method will be useful for compiling urbanization statistics on a global scale.  Remote sensing

data are increasingly available at that scale while GIS data are not.

We employ three steps to generate a set of membership values ui .  First, a supervised

classification procedure is used to classify the remote sensing data into five separate categories

corresponding to greenbelt, water, roads, rural, and urban using Bayer’s classification method as

described by Campbell (1996, chapter 11).  Secondly, pixels falling initially into the greenbelt,

water, or roads categories are assigned grey values along the initial urban-rural spectrum based on

the values of neighboring pixels (see Richards and Jia, 1999).  In the third and final step, the

Bayer’s classification method is reapplied, and values of the resultant discriminant function are

used to derive the degree of membership ui of each pixel.  This brings us to the “starting point”

for our method [2 ‡ 3].

Calculating fuzzy urban set statistics for study area

Our method for moving from [2‡3] is simply to calculate the three measures corresponding to

equations 6, 7, and 8 respectively.  Doing so yields the following results for our Ningbo City

study area:

Table 2:  Ningbo City as a fuzzy urban set

Year Level of urbanization Extent of fuzziness Degree of Entropy

1996 0.557 0.366 0.723

1990 0.553 0.365 0.572

1987 0.584 0.380 0.620
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The results point to the following conclusions:

• The measured level of urbanization in the study area fell perceptibly from 1987 to

1990, but remained essentially unchanged from 1990 to 1996.  In the context of

figure 5 this implies movement towards the origin ∅.

• The fuzziness of the urbanizing system decreased over time.  This tells us that land

use patterns are beginning to articulate themselves more distinctively, with clearer

demarcations between urban and rural land uses.  In the context of figure 5, it denotes

movement away from the midpoint M and towards one of the outer vertices.

• The level of entropy within the system varies markedly between periods within the

range of 0.57 to 0.72.  In the context of figure 5 this tells us that the urban set U is

located somewhere near the central diagonal.

Taken together, these results tell us that the representation of the Ningbo City study area

in the context of Kosko’s fuzzy hypercube is not far from the central diagonal, moving

slowly away from M and towards the origin.  The cumulative impression given by these

data is of a study area wherein the distinctions between urban and rural are sharpening

while urbanization itself is less intense but more spatially dispersed.

This pilot case demonstrates several useful points.  First, and most importantly, it

demonstrates the feasibility of the general approach advocated here.  However, it also

underlines the importance of continuing research in the classification of remote sensing

data, for the results of any procedure [2‡3] to derive summary statistics from the

membership data will depend critically on the quality of those data and of the procedures

[1‡2] used to derive them.  For example, a sequence of time series images may reflect

differences in weather conditions rather than underlying changes in urbanization.  This is

a problem that is well recognized in the remote sensing field, but we iterate the point

here.  More generally, just as a rising tide lifts all ships, continuing remote sensing

methodological improvements will enhance the quality of the summary statistics

proposed here.
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Concluding Remarks
From the perspective of the Chinese government, continued urbanization is a top priority for

China’s economic development and “a symbol of continuous human progress and the historical

trend of the contemporary world”.13  At present, just over thirty percent of China’s population is

regarded as urban, compared to less than twenty percent in 1978.  With a total population of 1.2

billion and growing, the implications of aggressive urbanization in China are staggering.  The

State Development Planning Commission, the Ministry of Construction, the World Bank, and

many other national and international agencies are struggling to help formulate policies to

facilitate and promote effective urbanization14.  A central question in this regard concerns the

appropriate spatial form and distribution of urbanization.  Although urban geographers are well

aware of the prevalence and significance of desakota urbanization patterns in China and

elsewhere, urban economists have been much less inclined to focus on this phenomenon.  One

reason for this reluctance is that spatially complex diffusion patterns cannot be summarized or

characterized succinctly, and therefore are not readily incorporated into the kinds of formal

models that economists are accustomed to using.  As we have seen, urban geographers are

moving more quickly from descriptive narratives of desakota phenomena to a range of computer-

based modeling approaches.  However, even in the absence of formal models, summary data are

important for our ability to grasp the evolving nature and extent of urbanization in China and

elsewhere.

The method proposed in this paper addresses this challenge in a unique way.  The approach is at

once simple yet comprehensive.  By formulating an urbanizing region (or a remote sensing image

thereof) as a fuzzy urban set, we can characterize its development in terms of three fundamental

dichotomies: (i) urban-rural, (ii) fuzzy-crisp, and (iii) entropy-order.  Moreover, these three

measures each stem from a single geometric interpretation whereby the fuzzy urban set U is

located as a single point within Kosko’s fuzzy hypercube.  A comprehensive characterization of

the observed urbanization phenomenon is derived simply by describing the fuzzy set U within

this unifying context.  This provides a solid basis for comparing urbanization patterns over time

and in different places, and it provides succinct measures of urbanization that may in turn support

the development of new classes of urbanization models.

                                                       
13 See remarks by Zhao Baojiang, Vice Minister of China’s Ministry of Construction at World Bank (2000)
workshop on urbanization in China.
14 See Chan (1992) or Ma and Fan (1994) for a contemporary historical perspective.
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Having said this, many issues remain to be addressed before this approach can be adapted widely

and systematically.  Foremost among these is the question of scope and scale of the areas to be

compared.   The measured attributes of any given study area will vary with one’s choice of the

corresponding remote sensing image boundary or resolution, and it is difficult to avoid a certain

element of arbitrariness in this selection.  Regarding boundary issues, one practical approach is to

work within existing jurisdictional boundaries and measure urbanization trends within this

framework.  An advantage of this approach is that it provides a frame of reference which, albeit

arbitrary, has meaningful links to decision-making.  This is less useful, however, wherever the

focus of urbanization extends across jurisdictional boundaries, as is increasingly the case.

Another disadvantage of using jurisdictional boundaries is the pitfall of circular reasoning alluded

to earlier whereby urban places are defined, in effect, as exogenously defined places that meet

some criteria for “urban”.  Working with fuzzy urban sets softens this dilema somewhat by

allowing degrees of urbanity, but it does not address the issue of place definition in a more

fundamental geographic sense.15  Even if place (or remote sensing image) boundaries were agreed

upon, one’s measure of urbanization is likely to depend upon the resolution of the image itself.

Of course, these issues are not new, nor are they specific to the fuzzy urban set approach

advocated here, but they are issues that must be contended with before our proposed method can

be subject to systematic and widespread use.  Notwithstanding these challenges, we aver that

fuzzy urban sets are a useful paradigm for characterizing urbanization trends in China and other

regions where desakota patterns are the norm.

                                                       
15 A more promising approach may be to define an urban place more endogenously in cartographic terms as
an aggregation of urban pixels, although this too invites many more questions regarding spatial
autocorrelation, contiguity, etc.
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