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Abstract

We study in the laboratory a series of first price sealed bid auctions of a common

value good. Bidders face three types of information: private information, public in-

formation and common uncertainty. Auctions are characterized by the relative size

of these three information elements. According to Nash Equilibrium theory, bids can

be decomposed into two additive parts. For the private information, bidders should

shade their bid. For the common uncertainty and public information, bidders should

compete à la Bertrand and bid the expected and realized values respectively. We find

that departures from equilibrium predictions occur not only with respect to private

information but with respect to public information and common uncertainty as well.

A cluster analysis shows that there is heterogeneous behavior with respect to each of

these three information elements. Estimation of the Cognitive Hierarchy and Cursed

Equilibrium models reveals that each model captures some important aspects of the

behavior of subjects. However, the disparity of the estimated parameters as we vary

the relative size of the three types of information suggests that their predictive power

is limited.
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1 Introduction

Common value auctions have been extensively studied in the laboratory. Two major

findings are behavioral heterogeneity (Crawford and Iriberri, 2007) and the perva-

siveness of the winner’s curse (Kagel and Levin (1986, 2008)). Despite the existing

literature, our knowledge of bidding behavior in those games is still incomplete. The

goal of this paper is to improve such understanding. To this purpose we introduce two

novel features in the design of an otherwise standard first-price sealed bid common

value auction with two bidders. First, we assume that the value of the good is the

sum of N independent components and that each bidder observes a subset of these

components. As a result, there are three separable and clearly identified types of in-

formation in this game: private information (the components observed by only one

bidder), public information (the components observed by both bidders) and common

uncertainty (the components observed by no bidder). Second, we vary the number of

components observed by each bidder and hold everything else constant. This changes

the relative importance of each type of information and allows for a comparative statics

analysis. More precisely we consider five combinations of information structures: two

with private information and common uncertainty, two with private information and

public information, and one with private information only.

Assuming risk neutrality, we show that the Nash Equilibrium (NE) bids in this auc-

tion can be decomposed into two additively separable parts. With respect to private

information, bidders shade their bid like in a typical common value auction (see e.g.

Milgrom and Weber (1982)). With respect to common uncertainty and public infor-

mation, bidders compete à la Bertrand and bid the expected value and the realized

value respectively.

We then analyze the results of the laboratory experiment. First, we perform de-

scriptive statistics of aggregate bids and payoffs. Then, we run an OLS regression

assuming that the bid of an individual is a linear function of public information and

a polynomial function of private information, with the constant term capturing how

the individual treats common uncertainty. Next, we conduct a cluster analysis. The

variable we use is the average deviation of the subject’s bids from the NE prediction

for each combination of information structures. Since we have five different informa-

tion structures, each individual is represented by five averages. Finally, we perform a

structural estimation of two behavioral models, Cognitive Hierarchy (CH – Camerer

et al. (2004)) and Cursed Equilibrium (CE – Eyster and Rabin (2005)).

By introducing different types of information and varying their relative importance

we obtain some new interesting conclusions that we summarize below. First, the re-

gression analysis in section 4 suggests that departures from the NE predictions occur
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not only with respect to private information but with respect to public information

and common uncertainty as well. In particular, subjects overbid for low realizations

of public information and underbid for high realizations, that is, their reaction to that

information is smaller than what theory predicts. Also, subjects underestimate the

common uncertainty element when the amount of information they possess is small.

Second, the cluster analysis performed in section 5 reveals that the behavioral hetero-

geneity emphasized in the literature is not a trait that arises exclusively due to the

difficulty in realizing the informational content of the rival’s bid. Instead, it is partly

a result of subjects treating the three types of information differently. For example,

clusters 1 and 2 in our sample have different aggregate behavior when there is common

uncertainty even though their behavior with respect to their private information is

quite similar (and quite close to NE predictions). A key difference is that cluster 1

bids more than the expected value of the common uncertainty whereas cluster 2 does

not. Third, the structural estimation of CE and CH in section 6 suggests, just like pre-

vious research, that both models capture interesting aspects of the subjects’ behavior.

In particular, CE captures in a parsimonious way the average bid of the data and the

departure from NE with respect to private information whereas CH captures remark-

ably well the dispersion in the distribution of bids and the behavioral heterogeneity

in the sample. However, in both models, the estimated parameters vary significantly

(and unpredictably for the CH model) as we change the relative size of the three types

of information. This is an important setback for the models, and one that deserves

further consideration, since all the estimations use the same pool of individuals. Fi-

nally we provide two examples of the potential benefits of combining a cluster analysis

with the estimation of a behavioral model. One relates to the close mapping between

clusters and levels of thinking. We find that for five out of six clusters, the vast ma-

jority of subjects within a cluster are mapped into the same level of the CH model.

This is quite remarkable since clustering is based on average deviations from NE, so

the variable employed is only indirectly related to steps of reasoning. The other relates

to the way in which clustering can inform models. Indeed, a crucial element in a CH

model is the anchoring type. In our data, we find no subject of the so-called “random

level 0” type, that is, a subject who bids randomly over the entire set of possible valu-

ations [0, 300]. By contrast, the cluster analysis suggests that the behavior of the seven

subjects in cluster 6 is consistent with a random bid over a “prudent” interval [0, 150].

This alternative definition for the anchoring type improves the fit of the CH model.

Our analysis relates to two strands of the experimental literature: common value

auctions and auctions with variable amounts of information. Kagel and Levin (1986)

is the classical reference on common value auctions in the laboratory. They assume the

value of the good is drawn from some distribution (typically uniform). Bidders receive
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a signal which is drawn from another distribution centered around the true realization.

In our study, we model the value of the good as the sum of several independent signals,

and each signal may or may not be observed by bidders. This is formally closer to the

models by Avery and Kagel (1997) and Klemperer (1998).1 As noted above, the novelty

of our paper lies in explicitly modeling different types of information and varying their

relative importance.

There is also an experimental literature on auctions with different amounts of in-

formation. Andreoni et al. (2007) study a series of private value auctions in which

bidders know not only their own valuation but also the valuation of some other bid-

ders. Naturally, the private value setting precludes any winner’s curse problem. Mares

and Shor (2008) analyze common value auctions with constant informational content

but distributed among a varying number of bidders. The paper explores the trade-off

competition vs. precision of estimates. Overall, both papers study how the amount

of private information affects the strategy of bidders. They do not consider how the

existence of other types of information may affect their strategy.

The paper proceeds as follows. The theoretical framework is developed in section

2 and the experimental setting is exposed in section 3. The aggregate analysis of the

experimental data is discussed in section 4 and the cluster analysis is performed in

section 5. Behavioral models are tested in section 6 and conclusions are presented in

section 7. Proofs, tables and figures are relegated to the Appendix.

2 Theoretical model

Consider a single good made of N components (with N even and greater or equal

than four). Each component i ∈ {1, . . . , N} has a value xi independently drawn from a

continuous distribution with positive density g(xi) on [x, x] and cumulative distribution

G(xi). The total value of the good is the same for every individual and equal to the

sum of the components, V =
∑N

i=1 xi.

Two risk neutral bidders, A and B indexed by j, bid for this good in a first price

sealed bid auction with no reserve price. Before placing their bids, A observes the first

r components of the good, {x1, . . . , xr}, and B observes the last r components of the

good, {xN−r+1, . . . , xN}, where r ∈ {1, . . . , N − 1}.
1In those studies, each bidder has one private signal. The value of the good is the sum of signals for one

bidder and the sum of signals plus a private value component for the other bidder. Therefore, when the

private value component is zero, their model is equivalent to one of our five treatments (the one with only

private information).
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Note that each bidder observes exactly r components and does not observe exactly

N − r components. Each bidder knows which components are and are not observed

by the other bidder. Also, bidders always have private information: by construction,

some components are only observed by A (e.g., x1) while other components are only

observed by B (e.g., xN ). It is useful to split the auction into three cases. When

r < N/2, there is common uncertainty : the components {xr+1, . . . , xN−r} are not

observed by any bidder. When r > N/2, there is public information: the components

{xN−r+1, . . . , xr} are observed by both bidders. Finally, when r = N/2, there is neither

common uncertainty nor public information. The value of the good is the sum of the

private information of both bidders.

As r increases, both bidders have more information about the value of the good.

From r = 1 to r = N/2, private information increases and common uncertainty de-

creases. From r = N/2 to r = N , private information decreases and public information

increases. It is useful for the rest of the analysis to introduce the following notations.

• Xr
A =

∑min{r,N−r}
i=1 xi: the sum of A’s private information.

• Xr
B =

∑N
i=max{N−r+1,r+1} xi: the sum of B’s private information.

• E[Xr
∅ ] =

∑N−r
i=r+1 E[xi]: the expected common uncertainty when r < N/2.

• Xr
Pub =

∑r
i=N−r+1 xi: the sum of public information when r > N/2.

Therefore, for all r, Xr
A, X

r
B ∈ [Xr, X

r
] with Xr = min{r,N − r} · x and X

r
=

min{r,N − r} · x. Since Xr
j is a sufficient statistic for the value of the components

privately known by j, we can restrict our analysis to strategies that are a function

of the total private information of a bidder rather than a function of each compo-

nent privately observed (see Milgrom and Weber, 1982). When r ≤ N/2, the private

information of bidders A and B are independent random variables with cumulative dis-

tribution F r(·) and density fr(·). When r ≥ N/2, the private information of bidders

A and B are independent random variables with cumulative distribution FN−r(·) and
density fN−r(·). Given each component xi has distribution G(xi) and components are

independent, we have

F r(Xr
A) =

∫ x

x

. . .

∫ x

x

G(Xr
A − x1 − · · · − xr−1)g(x1) . . . g(xr−1)dx1 . . . dxr−1.

and analogously for F r(Xr
B). Proposition 1 characterizes the optimal bidding strategies

and equilibrium utilities in this auction as a function of r.

Proposition 1. (Nash equilibrium) The optimal bidding strategy of agent j is:

• br(Xr
j ) = E[X∅] + 2

(
Xr

j −
∫ Xr

j
Xr F r(S)dS

F r(Xr
j )

)
when r < N/2,
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• br(Xr
j ) = 2

(
Xr

j −
∫ Xr

j
Xr F r(S)dS

F r(Xr
j )

)
when r = N/2,

• br(Xr
j ) = Xr

Pub + 2

(
Xr

j −
∫ Xr

j

XN−r FN−r(S)dS

FN−r(Xr
j )

)
when r > N/2.

and the equilibrium expected utility of agent j is:

• Ur
j (X

r
j ) =

∫Xr
j

Xr F r(s)ds when r ≤ N/2,

• Ur
j (X

r
j ) =

∫Xr
j

XN−r F
N−r(s)ds when r ≥ N/2.

The optimal bidding function can be split in two parts. The first part reflects

common uncertainty when r < N/2 and public information when r > N/2, while the

second part reflects private information for all r. For the first part, agents compete à

la Bertrand and end up bidding the expected value of the common uncertainty or the

realized value of the public information. For the second part, agents trade-off price vs.

likelihood of getting the good and shade their bids accordingly.

To determine the optimal shading, recall that in a private value auction, the sym-

metric Nash equilibrium bidding strategy for an agent with valuation X drawn from

distribution F (·) is b∗(X) = X−
∫ X
X

F (S)dS

F (X) . In a common value auction, and as seen in

Proposition 1, each agent bids 2b∗ to account for the private information components.

Hence, agent A bids as if the value of the private information of agent B were equal

to the value of his own private information. The reason is simply that, in a symmetric

equilibrium, the winner is the bidder with the highest signal. If A estimates the value

of B’s private information to be higher than his own, he may overpay in case of win-

ning. If he estimates this value to be lower than his own, he may lose the good at a

price lower than what he was actually willing to pay for it.

Finally, agents do not obtain any rent from common uncertainty or public informa-

tion. Therefore, their equilibrium expected utility is the same as in a standard common

value auction.

3 Experimental setting

We conducted 6 sessions with 8 or 10 subjects per session for a total of 52 subjects. The

subjects were students at the California Institute of Technology who were recruited by

email solicitation, and all sessions were conducted at the Social Science Experimental

Laboratory (SSEL). All interaction between subjects was computerized using an exten-

sion of the open source software package Multistage Games.2 No subject participated

2Documentation and instructions for downloading the software can be found at

http://multistage.ssel.caltech.edu.
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in more than one session.

In each session, subjects made decisions over 15 paid matches, with each match

being divided into 5 rounds. At the beginning of a match, subjects were randomly

matched into pairs and randomly assigned a role as bidder A or bidder B. Pairs and

roles remained fixed for the 5 rounds of a match. At the end of the match, subjects

were randomly rematched into new pairs and reassigned new roles.

The game closely followed the setting described in section 2. Subjects in a pair had

to bid in a first price sealed bid auction for a good made of N = 6 components. Each

component i ∈ {1, . . . , 6} contained xi tokens drawn from a uniform distribution in

[0, 50] (so G(xi) = xi/50).
3 The total value of the good was common to both bidders

and equal to the sum of the six components. Visually, each component was represented

by a box in the computer screen. The number of tokens inside each of the six boxes

was drawn at the beginning of the match. Subjects could see the six boxes but not

their content.

The match was then divided into 5 rounds. Round 1 corresponded to r = 1 in the

theory section. Subject A observed x1 (the content of box 1) and subject B observed x6

(the content of box 6). Neither subject observed x2 to x5 (the content of boxes 2 to 5).

Given this information, both participants submitted a bid for the entire good of value

V =
∑6

i=1 xi. Subjects could not see the bid of the other subject, instead they moved

to round 2. Round 2 corresponded to r = 2 in the theory section. Subjects A and B

could still observe x1 and x6 respectively, but now they could also see the content of

a second box (x2 for bidder A and x5 for bidder B), and placed a new bid again for

the entire good V . This process continued until round 5, r = 5 in the theory section,

where subject A observed x1 to x5 and subject B observed x2 to x6.
4 At the end of the

fifth round, the value V of the item and the five bids of each subject were displayed on

the computer screen. One of the rounds was randomly selected by the computer, and

subjects were paid for their performance in that round (this procedure allowed us to

have a higher conversion rate than if we had paid subjects for every round without, in

principle, affecting their strategy). Payoffs were computed according to the standard

rules of a first price auction without reserve price: the highest bidder would get the

item and pay his bid, while the lowest bidder would get nothing and pay nothing.

Summing up, the only variable that changed between rounds was the amount of in-

formation each bidder had, which increased from r to r+1. By contrast, the opponent,

3To simplify computations, we restricted xi to integer values.
4We did not consider the least interesting cases, r = 0 and r = 6. In the former case, there is no

information so risk-neutral subjects should bid the expected value. In the latter case, there is full information

so subjects should bid the realized value.
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role and total value of the item remained the same for the entire match. Naturally,

it was crucial not to disclose the bids of the opponent between rounds since they

contained information which could have been used as a signaling device, making the

theoretical analysis substantially more complicated. Finally, note that as we moved

from one round to the next, F r(·) the distribution function of the private information

of a bidder changed.5 Because the entire distribution (and not only the realized values)

affects the optimal bid (see Proposition 1), it is not possible to separate the optimal

bid in round r+1 into the optimal bid in round r plus the bid due to xr+1, the content

of box r + 1.

All participants started the experiment with an endowment of 400 tokens to which

the payoffs of each match were added or subtracted. At any moment, the participants

could not bid more than their current stock of tokens, resulting in a potential selection

effect due to liquidity constraints. However, this constraint was never binding in the

experiment. Indeed, the stock of tokens of all participants was always greater than

300, the maximum value of the item and therefore the maximum possible bid.6

At the beginning of each session, instructions were read by the experimenter stand-

ing on a stage in the front of the experiment room. The experimenter fully explained

the rules and how to operate the computer interface. After the instructions were fin-

ished, one practice match was conducted, for which subjects received no payment.

After the practice match, there was an interactive computerized comprehension quiz

that all subjects had to answer correctly before proceeding to the paid rounds. Then,

the 52 subjects participated in 15 paid matches each of them divided into 5 rounds

for a total of 75 bids per subject. Opponents, roles and values in the boxes were ran-

domly reassigned at the beginning of each match and held constant between rounds

of a match. In the end, subjects were paid, in cash, in private, their accumulated

earnings, which was equal to their initial endowment plus the payoffs of all matches.

The conversion rate was $1.00 for 25 tokens, so each good was worth between 0 and

$12. Sessions averaged one hour in length, and subjects earnings averaged $27.

4 Aggregate analysis

For our particular case with 6 boxes and values drawn from a uniform distribution in

[0, 50] (N = 6 and G(xi) = xi/50), Proposition 1 implies that the expected bid E[br]

is U-shaped across rounds: decreasing over rounds when r ≤ N/2 and increasing over

5In rounds 1 and 5, F 1(X1) is uniform in [0,50]. In rounds 2 and 4, F 2(X2) is triangular in [0,100], etc.
6We constrained the bids to be between 0 and 300: the minimum and maximum possible values of the

good before any information is revealed.
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rounds when r ≥ N/2.7 Indeed, bid shading is increasing in the amount of private

information that both bidders have, whereas for the public information and common

uncertainty elements agents always bid the realized and expected values respectively.

Also, since we focus on symmetric equilibria, when both bidders reduce their bids, their

ex-ante expected utility increases. This happens because the ex-ante expected value

of the good is constant. Therefore, the expected utility is hump-shaped across rounds:

increasing over rounds when r ≤ N/2 and decreasing over rounds when r ≥ N/2. In the

next sections we compare these properties of equilibrium behavior with the empirical

counterpart.

4.1 Aggregate bids and payoffs

The first cut at the data consists in an aggregate analysis of the data per round in

order to compare actual behavior with the NE predictions derived in Proposition 1.

Figure 1 shows the difference between actual bids and NE predictions in each round.

For each observation, we compute the NE bid and subtract it from the corresponding

observation. The line in the middle is the median of this statistic, whereas the top and

bottom lines are the 75th and 25th percentiles. The notches are the 95% confidence

interval for the median. We can make two main observations. First, deviations from

NE predictions exhibit a hump shaped pattern across rounds: they increase from round

1 to round 3 and decrease from round 3 to round 5. Deviations of the median in rounds

r and r + 1 are significantly different from each other at the 95% level for all r, and

they are all significantly different from zero. There is underbidding in round 1 and

overbidding in rounds 2 to 5. Second, the dispersion in the data decreases over rounds,

that is, it is inversely related to the total amount of information (private and public).

Table 1 displays the average actual bids per round and the NE predictions. It

also displays the best response to the empirical distribution (BR) for comparison. To

construct this table, we computed the NE bid and the best response to the empirical

distribution for each observation. Ideally, we would want to compute the empirical

distribution of the bids for each possible value of private information. Then, we would

be able to calculate the expected gain of each possible bid for each possible value of

private information. The best response to the empirical distribution would be the bid

that maximizes the expected gain. However, this procedure would require a massive

amount of data. Thus, we decided to divide the values of private information into 52

7The result is true at the boundaries for any distribution (E[b0] > E[b1] and E[bN−1] < E[bN ] for all

G(xi)). We conjecture that it should hold for all r when xi is in a certain class of distributions but we have

been unable to determine the properties of that class.
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bins, each with 15 observations.8 We used the average of private information in each

bin as the value of the opponent’s private information in that bin and then computed

the best response to the empirical distribution using the method described above.

As noted above, the average NE bid is U-shaped across rounds. In the data, the

average bid is increasing across rounds. Subjects tend to become more confident and

therefore bid more aggressively as their total information (whether it is private or

public) increases. Note, however, that the difference between the average bid and the

average NE prediction is relatively small in percentage terms (between 1% and 13%).

The best response to the empirical distribution is hump-shaped across rounds, which

is the opposite pattern of the NE predictions. Typically, it is optimal to underbid

significantly in rounds 1 and 5 and overbid in round 3. Subjects deviate more from the

best response in late rounds, with a maximum difference of 17% in round 5.

Table 2 displays the average gain.9 Notice that the loser of the auction makes

zero profits whereas the winner can make positive or negative profits. Gains at NE

were computed as if all subjects in the population were bidding the NE. The table

shows that the average gain in our sample decreases across rounds, instead of being

hump-shaped. This results from the fact that actual bids are increasing across rounds.

Despite the small reported differences in bids, the percentage difference in gains is

significant. By underbidding in round 1, subjects increase their payoff by 19% whereas

by overbidding in rounds 2 to 5 they decrease their payoff between 15% and 38%.

Moreover if subjects best responded to the empirical distribution their gains could

have increased by as much as 50% in some rounds. We summarize the findings of this

section in the following result.

Result 1. Average empirical bids and gains depart from NE predictions: bids are

increasing across rounds instead of U-shaped and gains are decreasing across rounds

instead of hump-shaped. Overbidding in rounds 2 to 5 imply losses of up to 38%.

4.2 Aggregate bids conditional on private information

In this section, we analyze bids as a function of private information only. We allocate

the values of private information into 5 bins containing the same number of observa-

tions. For each bin, we compute the average empirical bid, the Nash Equilibrium bid

(NE) and the Best Response to the empirical distribution (BR).10 Figure 2 displays

8To have the same precision when estimating the empirical distribution in each bin, we decided to have

the same number of observations per bin. This implies that bins have different lengths.
9Remember that we only paid subjects for one randomly drawn round per match. However, when we

mention ‘gain’ we refer to the profits subjects would have made if they were paid for all rounds.
10Again, we decided to have the same number of observations per bin instead of equal length bins.
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for each round the bids as a function of private information. Interestingly, the actual

bidding function is upward slopped but flatter than the NE bidding function. Subjects

overbid for low values of private information and underbid for high values of private

information in all rounds except round 1 where they always underbid. As noted in

Table 1 for the averages, in rounds 4 and 5 the actual bidding functions are above the

best response functions whereas in rounds 1, 2 and 3 they are remarkably close to each

other.

Result 2. The empirical bidding function is less responsive to private information

than predicted by NE theory.

4.3 Analysis of bidding strategies

The first cut at the data has allowed us to find bidding differences at the aggregate

level between NE predictions and the actual data. In particular, Result 1 implies

that the average expected bids are too low in round 1 and too high thereafter. Also,

Result 2 indicates that subjects overbid for low values of private information and

underbid for high values of private information. Taken together, the results suggest

that bidding behavior is heterogenous across rounds and that bidders have different

attitudes towards private information, public information and common uncertainty.

Said differently, the type and quantity of information is likely to play a role when bids

are computed.

In this section, we take a closer look at bidding functions across rounds to un-

derstand better how subjects react to the three types of information. To do so, we

compute an appropriate parameterized approximation of the NE bidding function and

estimate it.

Note that the NE bidding function is a linear function of public information and

a polynomial function of private information. In rounds 1 and 5, the polynomial is of

degree 1, whereas in rounds 2, 3 and 4 it is the ratio of two higher order polynomials.

A polynomial approximation is therefore a good candidate for our analysis. For each

round, we compute a cubic approximation of the NE bidding function. Namely, we set

the following relationship between the Nash Equilibrium bid, br, and the various types

of information:

br = α0 + α1Privr + α2(Privr)2 + α3(Privr)3 + α4Pubr + η(Privr)

In this equation, superscript r denotes the round, Priv is the variable of private in-

formation (tokens observed by only one bidder) and Pub is the variable of public

information (tokens observed by both bidders). The constant term α0 is the coefficient

of common uncertainty. At NE, α0 is the expected number of tokens in the boxes
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that nobody observes. These would be 100 in round 1, 50 in round 2 and 0 in the

remaining rounds under the exact polynomial expression for Priv. The coefficient of

public information, α4, appears only in rounds 4 and 5. At NE, it is equal to 1 since

both bidders compete à la Bertrand. Also, α1, α2 and α3 are the coefficients for the

cubic approximation of private information. Finally, η is the error of the cubic approx-

imation for each level of private information. It is different from zero in rounds 2, 3

and 4. The α-coefficients are reported in Table 3 for each round.11

We then use the bids of our data, bro, to run the following regression:

bro = β0 + β1Privro + β2(Privro)
2 + β3(Privro)

3 + β4Pubro + εo

where superscript r denotes the round and subscript o the observation. The α-

coefficients have been replaced by β-coefficients with the same interpretation. For each

round we compute the coefficients of the Feasible Generalized Least Squares (FGLS)

Random Effects regression for each of the variables and the t-test to check if each

coefficient is significantly different from the coefficient predicted by NE (α parame-

ters above).12 We also perform a global significance F-test to inspect if, overall, the

data bidding function is different from the NE bidding function. Table 3 and Figure 3

display the results of this exercise. Our main findings are the following.

First, the proportion of the bid driven by common uncertainty is smaller than

the NE prediction in round 1, similar in rounds 2 and 5 and higher in rounds 3 an

4. This result follows from a comparison between the estimated β0-coefficients and

the predicted NE α0-coefficients. Therefore, deviations from NE regarding common

uncertainty are hump-shaped. Subjects underestimate common uncertainty when they

have little total information, and they tend to overbid with respect to it as private

information grows.

Second, subjects react less to public information than what theory predicts. In-

deed, β4 is close to but smaller than the corresponding NE prediction. This result in

overbidding for low values of public information and underbidding for high values of

public information.

Third, the difference between subjects’ reaction to private information and the NE

prediction is round dependent. Subjects underbid for all values of private information

11We opted for a cubic rather than quadratic approximation, because the latter performs badly for

extreme values of private information. For example, in round 3, the quadratic approximation of NE has a

constant term of -20 instead of the theoretical prediction of 0.
12The FGLS estimator makes use of the panel data structure to get more precise coefficients. We also

performed the Hausman test and we could reject the presence of unobserved fixed effects. The variance

estimator is clustered by subject.
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in round 1 and overbid for all values of private information in round 3. In rounds 2, 4

and 5, they overbid for low values of private information and underbid for high values

of private information. In all cases and as noted in Result 2, subjects react less to

changes in private information than what NE predicts. This is easier to visualize with

the two- and three-dimensional plots of Figure 3 than with the coefficients of the cubic

polynomial approximation in Table 3.

Taking these results together, we can draw a link between the attitude towards

information per round and the aggregate results. Subjects place relatively low bids in

round 1 because they underestimate both common uncertainty and private information.

They place relatively high bids in round 3 because they overestimate their private

information (that is, they succumb to the winner’s curse). Therefore, in round 1

subjects have a higher payoff than they would have if everyone was playing the NE

and the converse happens in round 3. Last, although subjects bid on average close to

NE in rounds 2 and 5, the dispersion in those bids implies that the average gains are

substantially smaller than what they would be if everyone was playing the NE. Indeed,

for bidders with high values of private information, NE predicts that they should win

the auction with high probability and make a large profit. Because these subjects are

not bidding much more than the bidders with low values, they decrease their likelihood

of winning the auction and thus forego a large gain. We summarize these findings in

the following result.

Result 3. The reaction of subjects to both private and public information is smaller

than predicted by theory. The difference in the reaction to common uncertainty relative

to the theory is hump-shaped across rounds.

Overall, and as we can see from the F-test, the actual bidding functions are sig-

nificantly different from the NE bidding functions, with the exception of round 5.

Moreover, there is a large dispersion in the first rounds, hence the small R2.

5 Cluster Analysis

In order to understand finer aspects of bidding strategies and uncover the reasons

for the observed dispersion, we search for trends at a disaggregate level. One possible

approach would be to do a subject-by-subject analysis (as in Costa-Gomes et al. (2001)

for example). Even though this is in theory the most informative strategy, the reduced

number of observations for each individual in each round would prevent us from making

any confident assessment. We therefore take an alternative approach, which is to search

for clusters of subjects (as in Camerer and Ho (1999) and Brocas et al. (2009)). It is an

intermediate approach, as the aggregate approach implicitly assumes a single cluster is
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of interest while the subject-specific approach requires each subject to be in a singleton

cluster. One advantage of the method is to provide an implicit measure of how well

these two extreme cases capture the observed behavior.

5.1 Method

To find the clusters, we use the average deviation from NE for each of the 52 subjects in

each round. Each subject is thus represented by five averages. There is a wide array of

heuristic clustering methods that are commonly used but they usually require the num-

ber of clusters and the clustering criterion to be set ex-ante rather than endogenously

optimized. By contrast, mixture models treat each cluster as a component probabil-

ity distribution. Thus, the choice between different numbers of clusters and different

models can be made using Bayesian statistical methods (Fraley and Raftery, 2002).

Note that popular heuristic approaches such as ‘k means clustering’ are equivalent to

mixture models where a particular covariance structure is assumed.

Given that we do not want to presuppose a particular cluster structure, we follow

the second clustering strategy and implement a model-based clustering analysis. We

consider a maximum of ten components/clusters and assume a diagonal covariance

matrix. This implies that the correlation between the dimensions is zero and there is

no restriction on the variance. We first fix the number of clusters from 1 to 10 and, for

each of the models, we estimate the covariance matrix as well as the clustering that

maximizes the likelihood function. We use random clustering as an initial guess.13

Overall, for any possible number of clusters we obtain a clustering and the covariance

matrices for each cluster, and we compute the corresponding Bayesian Information

Criterion (BIC). Given this information, the optimal (endogenous) number of clusters

is the one for which BIC is maximized. For our data, the BIC is maximized for 6

clusters with diagonal covariance matrix. These clusters, labeled 1 to 6, contain 11,

13, 6, 6, 9 and 7 subjects respectively. Notice that the clusters are comparable in size,

although this does not necessarily need to be the case.

5.2 Bidding behavior by cluster

In order to determine the properties of our clusters, we perform the same regression

analysis as in section 4.3 for each cluster separately. The results can be found in

Table 4. Figure 4 is the equivalent of Figure 1 for each cluster (deviations from NE

predictions). Finally, Table 5 reports the average gains in each cluster.

13We ran the model several times and the results are consistent.
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Clusters 1 and 2 bid, on average, close to NE. A closer look at their bidding strate-

gies reveals that both clusters react less to increases in private and public information

than what NE predicts. Still a few differences can be noted. Subjects in cluster 1

slightly overbid in every round while subjects in cluster 2 slightly underbid in every

round. This is in part due to the fact that in rounds 1 and 2 cluster 1 bids above

the expected value of the common uncertainty whereas cluster 2 does not. The bid-

ding function of the latter is also relatively closer to NE when there is more private

information. Even though they bid close to Nash, these subjects do not obtain the

highest payoffs. This is true because their strategy departs from the best response to

the empirical distribution. Indeed, it is optimal to underbid significantly in rounds 1

and 5 and to bid close to Nash in rounds 2, 3 and 4.

Cluster 3 is composed of a relatively heterogeneous group of subjects who underbid

significantly in every round (the heterogeneity can be seen in the large variance of the

data). There is no pattern regarding common uncertainty and subjects do not react to

private or public information. Nevertheless, they obtain relatively high payoffs because

their underbidding strategy coincides often with the best response to the empirical

distribution.

Subjects in Cluster 4 overbid significantly in every round and are extremely ho-

mogeneous. Typically, those subjects have a clear biased attitude towards common

uncertainty, which they overestimate, but they react as Nash players with respect

to the two other types of information.14 Their average gains are lowest given their

substantial overbidding and the optimality of underbidding.

Cluster 5 is different from the other clusters because the bidding behavior is round-

dependent. Indeed, these subjects underbid in round 1, bid close to NE in rounds 2, 4

and 5 and overbid in round 3. The bidding function of these subjects with respect to

private information is very close to NE in rounds 1, 4 and 5. In rounds 2 and 3, the

slope of private information is higher than the NE predictions, that is, they react more

to private information than what NE predicts. As such, their attitude towards private

information is also different from what we observed in other clusters. These subjects

obtain the highest gains both overall and per round since their bidding strategy is close

to the best response to the empirical distribution.15

14The slope of private information is close to NE for low/medium values of private information and higher

than NE for high values of private information. The slope of public information is very close to the NE

predictions.
15It would have been interesting to investigate whether these subjects learn over time to best respond to

the empirical behavior of the population. We could not perform such analysis due to the reduced number

of observations (9 subjects).
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Last, subjects in cluster 6 underbid substantially (most notably in round 1) and are

extremely heterogeneous. Compared to cluster 3, their bids are significantly lower and

they are also more dispersed. Subjects in this cluster lose the auction most of the time

and therefore obtain small payoffs.

Result 4. Subjects in different clusters treat each type of information differently. It

can be summarized as:

Cluster Overall Private Information Public Information Common Uncertainty Heterogeneity

1 Slight overbid Close to NE React less than NE Above NE Small

2 Slight underbid Close to NE React less than NE Below NE Small

3 Underbid No reaction No reaction No pattern Large

4 Overbid Equal to NE Equal to NE Above NE Very small

5 Close to NE Round dependent Round dependent Round dependent Small

6 Strong underbid No pattern No pattern Below NE Large

As in previous studies (e.g., Crawford and Iriberri (2007), Brocas et al. (2009)), we

find clusters of subjects characterized by substantial homogeneity within groups and

heterogeneity across groups. More interestingly, the treatment of private information,

public information and common uncertainty differs across clusters: the type of infor-

mation is a crucial explanatory variable for bidding behavior even though it is not a

cluster variable. Also, subjects sometimes treat the same type of information differ-

ently across rounds. That is, the amount of a given type of information also impacts

bidding behavior.

The heterogeneity across clusters suggests that subjects may have different cognitive

abilities. This is most apparent for clusters 1, 2, 4 and 6. Subjects who strongly under-

bid (cluster 6) or systematically overbid (cluster 4) are likely to use simple heuristics.

They fail to realize the link between bids and information and they end up collecting

the smallest payoffs. Subjects who play relatively close to NE (clusters 1 and 2) look

sophisticated enough to approximate NE behavior for all types of information but,

at the same time, they overestimate the ability of their opponents to play NE. As a

consequence, they do not obtain the highest gains. The reasoning made by clusters 3

and 5, who obtain the highest payoffs, is more difficult to grasp. The bidding pattern

of cluster 3 suggests they may be using a ‘lucky’ heuristic that turns out to work well

in this type of auction. As for cluster 5, their ability to bid close to NE and to depart

from it at the correct time is intriguing. Perhaps they do realize the limitations of their

opponents and take advantage of this knowledge. As we will see below, a combination

of clustering and model estimation can help understand the differences in behavior.
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6 Behavioral Models

As seen in section 4, there are departures from NE predictions in two important di-

mensions: across rounds and across types of information. This suggests that subjects

compute different strategies than NE. Several leading behavioral models have been

proposed to explain departures in settings with private information (see e.g. Crawford

and Iriberri (2007) and Carrillo and Palfrey (2009) for estimations of several different

models). In this section, we explore two of them, namely the Cursed Equilibrium (CE)

and Cognitive Hierarchy (CH) models. We do not report results based on the Quantal

Response Equilibrium model (QRE – McKelvey and Palfrey (1995)) for empirical and

technical reasons. First, QRE performs poorly with our data. Indeed, for our parame-

ter specification QRE predicts aggregate underbidding whereas we empirically observe

aggregate overbidding with the exception of round 1. Second, the strategy space is

very large, with 301 possible bids for each value of private and public information.

Therefore, solving the system of equations required to calculate QRE exceeds the lim-

its of a normal computer. To tackle this issue we would have to aggregate the possible

bids and values of private and public information into bins, a procedure that would

disregard a significant amount of information. A brief discussion of the results of the

QRE model is reported in Appendix A.2. Finally, there is another recent behavioral

theory for games with private information, the Behavioral Equilibrium model (BE –

Esponda (2008)). This equilibrium concept is related to CE as it also assumes an

imperfect account of the link between rival’s bid and rival’s information. However, the

BE model relates the behavior of players with the information revealed in the end of

each game. In our setting, BE predictions are equivalent to NE predictions because in

all auctions the two highest bids and the value of the good are revealed to all bidders.

Thus bidders have all the required information to make accurate forecasts about both

the probability of winning the auction and the value of the good. Therefore, we did

not estimate it either.

6.1 Theory

6.1.1 Cursed Equilibrium (CE)

In the CE model, each bidder systematically underestimates the correlation between

the opponent’s bid and private information. In a χ-cursed equilibrium, all bidders

believe that with probability χ there is no correlation and with probability (1 − χ)

other bidders are also χ-cursed, with χ ∈ [0, 1]. The model is equivalent to NE when

χ = 0. Subjects are said to be “fully cursed” when χ = 1. In our setting and following

Eyster and Rabin (2005), the expected utility of a cursed bidder A can be computed

analytically. When r < N/2, assuming bidder B bids according to an increasing
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bidding function bCE,r(Xr
B) and denoting A’s bid by bCE,r

A , the expected utility can

be written as:

UCE,r
A = Pr

(
bCE,r
A ≥ bCE,r(Xr

B)
) [

χ
(
Xr

A + E[Xr
∅ ] + E[Xr

B ]
)

+(1− χ)
(
Xr

A + E[Xr
∅ ] + E

[
Xr

B

∣∣ bCE,r
A ≥ bCE,r(Xr

B)
])

− bCE,r
A

]
The CE bid can then be determined using the same procedure as we did for the NE

bid, and we get:

bCE,r(Xr
A) = E[Xr

∅ ] + χE[Xr
B ] + (2− χ)

Xr
A −

∫Xr
A

Xr F r(s)ds

F r(Xr
A)


When r > N/2, we just need to replace E[Xr

∅ ] by Xr
Pub and F r(·) by FN−r(·). When

r = N/2 the term E[Xr
∅ ] disappears and F r(·) becomes FN/2(·). Comparing the CE

and NE bids, bCE,r(Xr
j ) and br(Xr

j ), we obtain the following result.

Proposition 2. (Cursed equilibrium) CE predicts overbidding for all continuous

c.d.f. G(x) and for all r. Overbidding is entirely driven by private information since a

CE bidder treats public information and common uncertainty just like a NE bidder.

Cursed bidders always overbid compared to Nash players. This occurs because

cursed bidders do not fully comprehend the link between the bid of the opponent and

the signal he has about the value of the item. Higher levels of cursedness (higher χ)

imply more overbidding. Also, a larger component of private information implies more

aggregate overbidding. Therefore, for any given χ, cursed equilibrium predicts the

highest level of overbidding in round 3, and the smallest in rounds 1 and 5. Finally but

importantly, CE handles public information and common uncertainty as NE does. This

is true because CE is a model of bounded rationality about the correlation between

actions and private information, and does not predict any deviations relative to the

two other types of information.

6.1.2 Cognitive Hierarchy (CH)

The CH model relaxes the assumption of accurate and homogeneous beliefs. It assumes

there are different levels of strategic thinking in the population, and each level best

responds to a mixture of lower levels. The model is built around an anchoring type,

level-0, that behaves in a non-strategic way. In this paper, we follow the approach of

Crawford and Iriberri (2007) and assume that each type believes everyone else’s type

corresponds to the level immediately below. Formally, level-1 best responds to level-0,

level-2 best responds to level-1, and so on.16

16Instead, in the original theory (Camerer et al., 2004) each level believes that the population is distributed

among all levels below.
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The definition of level-0 is crucial since it anchors the beliefs and therefore the

actions of all other types. Here again, we take a conservative route and follow Crawford

and Iriberri (2007) who define two possible types of level-0: random and truthful. A

random level-0 (henceforth RL0), the most common in cognitive hierarchy models,

chooses a bid uniformly random over all the possible bids. A truthful level-0 (henceforth

TL0) bids the amount of the boxes he observes plus the expected amount of the boxes

he does not observe, that is, he does not take into account any strategic or informational

effects.17 We then define RLk and TLk as the level types k (∈ {1, 2}) anchored on

RL0 and TL0, respectively. We do not consider levels 3 and above because they are

unlikely to be observed empirically.

By construction, this model delivers heterogeneous behavior. Unlike the CE model,

we cannot determine a priori whether a level-k subject will underbid or overbid, as it

will depend on the parameters of the model, G(x) and N . Figure 5 displays in our

specific setting (G(x) = x/50 and N = 6) the predicted bids for each truthful and

random level-k (with k ∈ {0, 1, 2}) in rounds 1, 2 and 3 as a function of their private

information.18 Notice that TL0 overbid in all rounds for all levels of private information

since they treat public information and common uncertainty correctly but do not shade

their bids due to private information. TL1 and TL2 bid close to NE in round 1 for

some values of private information whereas RL1 and RL2 have a tendency to underbid.

Perhaps more surprising is the fact that the bidding functions of TL1 and RL2 have

flat portions. It occurs because some types want to win the auction for sure for a range

of values of their private information. This is ensured by matching the maximum

possible bid of the rival. Conversely, other types want to lose the auction for another

range of values of their private information. Again, this is ensured by matching the

minimum possible bid of the rival. The overall bidding functions are therefore kinked

and flat on some domains (Figure 5). These conclusions are summarized below. They

are determined numerically for G(x) = x/50 and N = 6.

Proposition 3. (Cognitive Hierarchy) CH predicts heterogeneous behavior. It can

generate both underbidding and overbidding and predicts that the bidding functions of

some types should be flat for some range of private information values.

17Notice the importance of the definition of the anchoring type. For example, TL0 is very sophisticated in

some dimensions, as it treats public information and common uncertainty just like a NE player does. Also,

even the most unsophisticated subjects behave differently in a first- and a second-price auction. Although

here we only consider a first-price auction, one may wonder what would be a natural definition of RL0 and

TL0 in a second-price auction then.
18It is not possible to obtain analytical solutions for all bidding functions of all levels in all rounds.

Also, bidding behavior in rounds 4 and 5 depends on the realization of Xr
Pub and is omitted. Naturally, it

coincides with behavior in rounds 2 and 1 respectively whenever Xr
Pub = E[Xr

∅ ].
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6.2 Estimation

In this section we estimate these two behavioral models to check how well they each fit

the data. For both models we perform two sets of estimations, one where we constrain

the parameters to be the same for all rounds and another where we allow the parameters

to differ across rounds. If the CE and CH models are robust, the parameters in the

constrained and unconstrained estimations should be similar. It is important to stress

the difficulty of a direct comparison between CE and CH, due to the fact that the CH

model has six parameters and the CE only one. One way to overcome this obstacle

would be to allow for different levels of cursedness in the population. However, this

poses a technical problem: each individual should best respond to the population and

solving for that system of equations is beyond the capacity of a normal computer.19

We use the following econometric specification:

bom = bw(Xom) + εom

where bom is the bid observed in the data for observation o of subject m, bw(Xom) is

the bid predicted by model w ∈ {CE,CH}, and εom is an error term assumed to be

independently distributed and following the normal distribution N(0, σ). Therefore,

Pr[bom |Xom] = f(bom − bw(Xom)), where f(·) is the density of a normal distribution

with mean zero and standard deviation σ.20 For each model we find the parameters

that maximize the log-likelihood of our sample. Since the CH model assigns types to

subjects, we construct the likelihood function per subject and then sum all subjects’

likelihoods. Therefore, if we have O observations per subject, M subjects and L types

with proportions πl that sum to one, we get the following log-likelihood function:

LL(π, σ
∣∣ b) = M∑

m=1

log

(
L∑

l=1

πl

O∏
o=1

Pr[bom
∣∣ Xom, l]

)

There are no different types in the CE model and the bidding function has the level of

cursedness χ as the only parameter. Therefore, the log-likelihood function is:

LL(χ, σ
∣∣ b) = M∑

m=1

O∑
o=1

log
(
Pr[bom

∣∣ Xom, χ]
)

19Crawford and Iriberri (2007) allow for different levels of cursedness but assume that each subject believes

that everyone in the population has the same level of cursedness as him/herself. This is an interesting

compromise. However, we chose not to follow that route because, in our view, a systematic bias regarding

other player’s behavior goes somewhat against the fundamental premises of CE.
20An alternative estimation strategy was to use a logit model. However, given the large number of actions,

many of which were not observed in the data, we ran into an empty cell problem.
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Table 6 displays the estimation results of the two behavioral models. The column

labeled all rounds reports the findings when we constrain the parameters to be the

same for all rounds. For each of the two sets of estimations, we compute two infor-

mation criteria: the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC). The lower the value of these criteria, the better the model fits the

data. According to both criteria the CH model fits the data better than the CE model.

However, we do not want to stress too much this result because AIC and BIC are not

the most appropriate tests for non-nested models.

The results are presented in a more intuitive way in Figure 6. It plots the densities of

the empirical deviations from NE as well as the deviations from NE estimated by each

model. On the x-axis are the deviations from NE and on the y-axis is the empirical

and estimated probability density functions. As we can see from the graphs, each

model captures different aspects of the data. CE captures accurately the average of

the data (the peak of the CE density matches well the peak of the data) but not the

extent of the asymmetry in the dispersion, due in part to the restricted number of

parameters. Conversely, CH does not capture the average of the data in some rounds

but the heterogeneity of the different levels captures quite well the dispersion.

Notice from Table 6 that the estimated level of cursedness increases with the amount

of private information (it is highest in round 3 and lowest in rounds 1 and 5). The

differences in cursedness between rounds r and r + 1 are all significant at the 95%

level. Also, when we perform the likelihood ratio test comparing the model where we

restrict χ to be the same for all rounds with the model where we allow χ to be different

across rounds, we find that the differences are statistically significant at the 98% level.

Remember that the CE model predicts overbidding compared to NE (the estimation

of χ = 0 in round 1 reflects the observed underbidding in that round). It also predicts

that, for a given level of cursedness, overbidding will be stronger the greater the total

amount of private information (see Proposition 2). Our result shows that subjects

increase their bids from rounds 1 to 3 and decrease their binds from rounds 3 to 5

more than what the model predicts. We summarize the results of the CE estimations

as follows.

Result 5. The CE model captures: (i) the peak of the empirical distribution of bids,

(ii) the strongly monotonic bidding functions, and (iii) the departure from NE regarding

private information.

The CE model does not capture: (i) the dispersion of the empirical distribution of

bids, (ii) the heterogeneity in the sample, and (iii) the departure from NE regarding

common uncertainty and public information.

The results we obtain for the CH model are more puzzling. As mentioned above,
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the model captures well the dispersion of the data. On the other hand, the proportions

of the different types change drastically across rounds, and we have not been able to

find any systematic pattern. Also, the differences between the model where we restrict

the proportions of the types to be the same for all rounds with the model where we

allow the proportions of the types to differ across rounds are significant at the 98%

confidence level according to the likelihood ratio test.

In order to gain a better understanding of the performance of the CH model, we

performed two further exercises. First, we classified each subject into a level and

compared the theoretical bidding functions obtained for each level with the data and

the best cubic fit.21 Figure 7 shows the graphs of the most interesting types, RL2 and

TL1, where the CH theory predicts bidding functions that are not strictly monotonic

(graphs of the other types are available upon request). Even though the data roughly

follows the patterns of the CH predictions, none of the actual bidding functions exhibit

the flat portions. Also and except for TL1 in round 1, the bidding functions are more

reactive to private information than what the CH model predicts.

Second, it is also instructive to compare the results obtained for the CH model with

the cluster analysis conducted in section 5. That analysis showed that our sample can

be divided in several groups with typical bidding attitudes. Given this heterogeneity,

the CH model offers an adequate structure to explain the data. Note in particular

that the classification of subjects according to levels is nothing but a specific clustering

exercise in which levels are exogenously fixed by the CH model. If the CH model

predicts bidding behavior accurately, levels should coincide to a large degree with our

(endogenously determined) clusters. Table 7 shows how subjects in our six clusters are

classified across levels. Notice that subjects in a cluster are mapped almost exclusively

into one of the CH types, except for cluster 1 which is mapped into two types. This is

an encouraging result for the CH model. However, the converse is not true: subjects

of a given type (most notably TL0 and TL1) are found in more than one cluster. In

particular, subjects in clusters 1 and 2 classified as TL1 are pooled with subjects in

cluster 5. This indicates the CH model does not make a distinction between the two

drastically different patterns of behavior evidenced in those clusters. It captures the

‘closeness’ to NE but it cannot explain the attitude vis-à-vis each type of information

across rounds. As for the rest, subjects in cluster 3 are classified as RL2. This type

tends to underbid and captures to some extent the systematic underbidding of that

cluster. It is also not surprising that subjects in cluster 4 are classified as TL0. These

subjects offer the paradigmatic example of the tendency to overbid in common value

21We classified each subject to the CH type that minimizes the quadratic distance between the subject’s

bids and the CH type’s predictions. We considered the six functions corresponding to each type of the CH

model (RLk and TLk with k ∈ {0, 1, 2}).
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auctions. Subjects in cluster 6 are classified as RL1 because they exhibit extreme

underbidding behavior. Finally, note that we do not find subjects classified as RL0 in

our sample.

A closer inspection of the classification of clusters into levels suggests the following.

Subjects in clusters 4 and 6, the most naive bidders in our sample, belong to the

lowest levels of the CH model with positive representation: TL0 and RL1. An intuitive

improvement over the CH model considered previously would be to assume that clusters

4 and 6 are the actual lowest levels of the CH model. The case is easy to make for

cluster 4 which is already classified as TL0. As for subjects in cluster 6, their extreme

underbidding strategy is consistent with bidding randomly on the interval [0, 150]. Let

us denote this type by random∗ level-0 (henceforth, R∗L0). Because of the properties

of the uniform distribution, this new definition of RL0 does not change the optimal

bidding function of the next levels. The results of this exercise are presented in Table

8. With this alternative hierarchy of random players, the proportion of R∗L0 increases,

the proportions of RL1 and RL2 decrease and the proportions of the truthful types

do not change. In essence, the subjects in cluster 6 who were “wrongly” classified as

either RL1 or RL2 are now classified as R∗L0. The fit of the model is improved both

under the AIC and the BIC criteria. However, according to the likelihood ratio test,

the differences in the estimated parameters between the constrained and unconstrained

models are still significant at the 98% level.

Summing up, the CH model explains to some extent how different levels treat

different types of information in a different way, and generates a behavior that is

roughly consistent with the observed bidding. However, the model cannot explain the

different treatment of the different types of information across rounds. For instance,

the behavior of cluster 5 cannot be accounted for by the CH model. Moreover, the

model predicts that some bidding functions will not be strictly monotonic, a feature

that is not present in our data. The result is summarized as follows.

Result 6. The CH model captures: (i) the dispersion of the empirical distribution of

bids, (ii) the heterogeneity of behavior and the mapping between types and clusters, and

(iii) to some extent, the departure from NE regarding the three types of information.

The CH model does not capture: (i) the peak of the empirical distribution of bids,

and (ii) the strongly monotonic bidding functions.

Taken together, Results 5 and 6 suggest that each model captures some interesting

aspects of the behavior of subjects. However, they both exhibit limitations. First and

foremost, both models show inconsistencies across rounds. If we believe the role of a

behavioral model is to deliver better predictions than NE theory, it must be consistent

over a range of environments. More modestly, if the same subjects play in all rounds,
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we would like to obtain similar estimations of the parameters across rounds. None of

the models has this property in our experiment. Second, each model ‘fixes’ a specific

observed departures from NE theory. The CE model generates a bias with respect

to private information only. As such, it cannot explain a biased attitude towards

public information or common uncertainty. The CH model generates heterogeneous

behavior. However, it is very sensitive to the specification of level-0 behavior. A

single hierarchy of levels (either random or truthful) would not recover much of the

observed behavior in our sample. Combining both hierarchies helps capture important

aspects of the bidding patterns. Interestingly, the cluster analysis allows us to refine

the behavior of the lowest levels. It indicates that all subjects think about the game,

and that the most naive players are of two types: subjects who disregard informational

effects and consequently overbid, and subjects who choose randomly over ‘prudent’

bids. Using revised hierarchies based on these premises helps capturing better the

data. We summarize the main limitation of the models in the following result.

Result 7. The estimated parameters in the behavioral models (cursedness in CE and

proportion of hierarchy types in CH) are significantly different across rounds. The

cluster analysis allows us to refine the behavior of lowest level random players in CH.

7 Conclusions

This paper incorporates two novel features that facilitate the study of bidding behavior

in common value auctions. First, it divides the goods into three (additively separable)

elements: those known by both bidders, those known by one bidder, and those known by

no bidder. Second, it varies the relative importance of each element holding everything

else constant.

The paper replicates the overbidding tendency highlighted in previous research

(Kagel and Levin (1986, 2008)) as well as the ability of the Cognitive Hierarchy model

to capture reasonably well the behavioral heterogeneity of individuals (Crawford and

Iriberri, 2007). More importantly, our two variants generate several new results. First,

the regression analysis suggests that subjects depart from NE not only with respect to

their treatment of private information but also with respect to their treatment of public

information and common uncertainty. In particular, bidders on average react to public

information less than predicted by theory. Second, the cluster analysis suggests that

part of the heterogeneity across individuals is due to how different subjects treat the dif-

ferent information components. So, for example, clusters 1 and 4 react as Nash players

with respect to private information and overreact with respect to common uncertainty.

However, the former cluster underreacts with respect to public information whereas

the latter overreacts. Third, although CE and CH can account for some interesting
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features of the data, these two models exhibit an important limitation. Indeed, the

estimated parameters in both models change significantly (and rather unpredictably

for CH) over rounds even though the same set of individuals plays in all of them.22

Finally, interesting insights can be gained from the combination of cluster analysis and

CH estimation. Quite remarkably, in five of the six clusters, most subjects within a

cluster are mapped into the same level of the CH model, despite the fact that clustering

is made on an orthogonal dimension. Cluster behavior can also be used to refine the

definition of the anchoring type.

We conclude with two general comments. First, the auction studied in this paper

has a signal extraction problem which is similar to other games with common values and

private information: informational cascades, information aggregation through voting,

and jury verdicts just to name a few. Our paper suggests that for these type of

settings, one should pay close attention to the way in which information is presented.

Indeed, different models may have qualitatively the same theoretical predictions. In

practice, however, the behavior of subjects may be affected by the presence and relative

importance of other elements such as public information and common uncertainty.

Second, performing both a cluster analysis and a structural estimation of a theory based

on heterogeneous types can improve our understanding of the behavior of subjects in

complex games. The paper provides a first example of what this joint methodology

has to offer but the results suggest that more work in this direction is still needed.

References

[1] Andreoni, J., Che, Y. and Kim, J. (2007). “Asymmetric Information About Rival’s

Types in Standard Auctions: An Experiment,” Games and Economic Behavior,

59, 240-259.

[2] Avery, C. and Kagel, J. H. (1997). “Second-Price Auctions With Asymmetric

Payoffs: An Experimental Investigation,” Journal of Economics & Management

Strategy, 6 (3), 573-603.

[3] Brocas, I., Carrillo, J., Wang, S. and Camerer, C. (2009). “Measuring Attention

and Strategic Behavior in Games with Private Information,” Working Paper.

[4] Camerer, C. and Ho, T. (1999). “Experience-weighted Attraction Learning in

Normal-Form Games,” Econometrica, 67 (4), 827-874.

22A different limitation has been provided in two elegant experiments by Charness and Levin (2009) and

Ivanov et al. (2010). The papers show that subjects in the takeover game and second price common value

auctions fall for the winner’s curse even when the design explicitly rules out incorrect beliefs (the basis of

CH and CE) as a potential explanation.

25



[5] Camerer, C., Ho, T. and Chong, J. (2004). “A Cognitive Hierarchy Model of

Behavior in Games,” Quarterly Journal of Economics, 119, 861-98.

[6] Carrillo, J.D. and Palfrey, T. (2009). “The Compromise Game: Two-sided Adverse

Selection in the Laboratory,” American Economic Journal: Microeconomics, 1(1),

151-181.

[7] Charness, G. and Levin, D. (2009). “The Origin of the Winner’s Curse: A Labo-

ratory Study,” American Economic Journal: Microeconomics, 1(1), 20736.

[8] Costa-Gomes, M., Crawford, V. P. and Broseta, B. (2001). “Cognition and Be-

havior in Normal-Form Games: An Experimental Study,” Econometrica, 69 (5),

1193-1235.

[9] Crawford, V. P. and Iriberri, N. (2007). “Level-k Auctions: Can a Non-equilibrium

Model of Strategic Thinking Explain the Winner’s Curse and Overbidding in

Private-Value Auctions?,” Econometrica, 75 (6), 1721-1770.

[10] Esponda, I. (2008). “Information Feedback in First Price Auctions,” RAND Jour-

nal of Economics, 39 (2), 491-508.

[11] Eyster, E. and Rabin, M. (2005). “Cursed Equilibrium,” Econometrica, 73 (5),

1623-1672.

[12] Fraley, C. and Raftery, A. E. (2002). “Model-based clustering, discriminant anal-

ysis, and density estimation,” Journal of the American Statistical Association, 97,

611-631.

[13] Ivanov, A., Levin, D. and M. Niederle (2010) “Can Relaxation of Beliefs Rational-

ize the Winner’s Curse?: An Experimental Study” forthcoming in Econometrica.

[14] Kagel, J. H. and Levin, D. (1986). “The Winner’s Curse and Public Information

in Common Value Auctions,” The American Economic Review, 76 (5), 894-920.

[15] Kagel, J. H. and Levin, D. (2008). “Auctions: A Survey of Experimental Research,

1995-2008,” The Handbook of Experimental Economics, Volume II, Kagel, J. H.

and Roth, A. E. (eds). Princeton University Press.

[16] Klemperer, P. (1998). “Auctions with Almost Common Values,” European Eco-

nomic Review, 42, 757-769.

[17] Mares, V. and Shor, M. (2008). “Industry Concentration in Common Value Auc-

tions: Theory and Evidence,” Economic Theory, 35, 37-56.

[18] McKelvey, R. and Palfrey, T. (1995). “Quantal Response Equilibria in Normal

Form Games,” Games and Economic Behavior, 10, 6-38.

[19] Milgrom, P. R. and Weber, R. J. (1982). “A Theory of Auctions and Competitive

Bidding,” Econometrica, 50 (5), 1089-1122.

26



A Appendix

A.1 Proofs

Proof of Proposition 1.

We restrict the attention to monotonic bidding strategies that are differentiable. As-

sume that bidder B bids according to such a function and denote it by br(XB).

Let r < N/2. The expected utility of bidder A when he bids brA is Ur
A = Pr(brA ≥

br(Xr
B))

(
Xr

A + E[Xr
∅ ] + E [Xr

B |brA ≥ br(Xr
B)]− brA

)
. Using the distribution of Xr

A, it

can be rewritten as:

Ur
A =

(
Xr

A + E[Xr
∅ ]− brA

)
F r(br

−1

(brA)) +

∫ br
−1

(brA)

Xr

Xr
Bf

r(Xr
B)dX

r
B (1)

Maximizing UA with respect to brA and imposing the symmetry condition brA = br, we

get the following first-order condition:(
2Xr

A + E[Xr
∅ ]
)
fr(Xr

A) = F r(Xr
A)b

r
′

(Xr
A) + br(Xr

A)f
r(Xr

A)

Integrating both sides yields the result. The ex-ante expected bid when r < N/2 is

E[br] =

∫ X
r

Xr

E[Xr
∅ ] + 2

Xr
A −

∫Xr
A

Xr F r(s)ds

F r(Xr
A)

 fr(Xr
A)dX

r
A

Integrating the last term by parts, we get:

E[br] = E[Xr
∅ ] + 2E[Xr

A] + 2

∫ X
r

Xr

log(F r(Xr
A))F

r(Xr
A)dX

r
A

⇐⇒ E[br] = E[V ] + 2

∫ X
r

Xr

log(F r(Xr
A))F

r(Xr
A)dX

r
A

The ex-ante expected utility of bidder A is E[Ur
A] =

∫X
r

Xr Ur
A(X

r
A)f

r(Xr
A)dX

r
A and at

equilibrium Ur
A(X

r
A) =

∫Xr
A

Xr F r(s)ds. Integrating by parts, we get

E[Ur
A] =

∫ X
r

Xr

F r(Xr
A) (1− F r(Xr

A)) dX
r
A

When r = N/2 there is no common uncertainty so we just need to remove the

term E[Xr
∅ ]. When r > N/2, We have a family of functions parameterized by Xr

Pub.

Therefore, we can substitute E[Xr
∅ ] by Xr

Pub and follow the exact same procedure to

get the result. �

Proof of Proposition 2.
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From the definitions of br(Xr
A) and bCE,r(Xr

A), we have:

bCE,r(Xr
A)− br(Xr

A) = χ

E[Xr
B ]−Xr

A +

∫Xr
A

Xr F r(s)ds

F r(Xr
A)


When Xr

A = Xr:

bCE,r(Xr)− br(Xr) = χ [E[XB ]−Xr] > 0

When Xr
A = X

r
:

bCE,r(X
r
)− br(X

r
) = χ

[∫ X
r

Xr

Xr
Bf

r(Xr
B)dX

r
B −X

r
+

∫ X
r

Xr

F r(s)ds

]

= χ

[
[Xr

BF
r(Xr

B)]
X

r

Xr −
∫ X

r

Xr

F r(Xr
B)dX

r
B −X

r
+

∫ X
r

Xr

F r(s)ds

]
= 0

Finally notice that:

∂(bCE,r(Xr
A)− br(Xr

A))

∂Xr
A

= χ
fr(Xr

A)
∫Xr

A

Xr F r(s)ds

F r(Xr
A)

2
≥ 0 ∀Xr

A ∈ [Xr, X
r
],

and the proposition follows. �

A.2 Quantal response equilibrium

QRE is an equilibrium model with noisy best responses. The model is characterized by

a parameter λ that measures the precision of the best responses. When λ = 0, agents

behave randomly, choosing each strategy with equal probability. When λ → ∞, agents

behave as in NE. In our model the strategy space is the set of bids, b ∈ [Nx,Nx].

Since agents have private information about the value of the item, we have to compute

the probability of choosing each bid conditional on the level of private information.

Formally, assuming only integer bids can be chosen:

Pr(brA |Xr
A) =

exp(λU(brA |Xr
A))∑Nx

b=Nx exp(λU(b |Xr
A))

∀brA ∈ {Nx, ..., Nx}, Xr
A ∈ [Xr, X

r
]

When r ≤ N/2, we have:

U(brA |Xr
A) =

∫ X
r
B

Xr
B

1

2
Pr(brA |Xr

B) +

brA−1∑
i=Nx

Pr(b = i |Xr
B)


×
(
Xr

A + E[Xr
∅ ] +Xr

B − brA
)
fr(Xr

B)dX
r
B

When r = N/2 we simply need to remove E[Xr
∅ ]. When r > N/2, we replace E[Xr

∅ ]

by Xr
Pub and F r(·) by FN−r(·). The term P (brA |Xr

B)/2 appears because it is assumed

that each bidder wins with probability 1/2 in case of a tie.
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To understand bidding QRE, we need to consider three factors. First, for low bids

the payoff is bounded below at zero (losing the item), while for high bids the payoff may

be negative (paying more than the value of the item). Therefore, lower bids are more

likely than higher bids. This effect makes QRE predict underbidding relative to NE.

Second, if other agents are underbidding, it is possible to win the item at an even lower

price, and there are incentives to reduce bids even further. Third, in a common value

auction the signals of all bidders affect the value of the item and therefore, directly

affect the utility of all bidders. If an agent anticipates that his rival is underbidding, he

has incentives to increase his own bid. This is true because the anticipated low bid of

his rival is still associated with a high signal. Therefore, the value of the item is higher,

and it is worth to bid more for it. Which effect dominates depends on the distribution

of the private signals. In our specification of the model, the combined effect is that

QRE predicts underbidding relative to NE.

A.3 Figures

1 2 3 4 5
−50

−40

−30

−20

−10

0

10

20

30

40

B
id

 m
in

us
 N

as
h 

pr
ed

ic
tio

n

Round

Data minus Nash

Figure 1: Deviations from NE

29



0 20 40 60 80 100 120 140
50

60

70

80

90

100

110

120

130

140

150

Private Info

B
id

Bids in Round 1

 

 

Data
Nash
BR

0 20 40 60 80 100 120 140
50

60

70

80

90

100

110

120

130

140

150

Private Info

B
id

Bids in Round 2

 

 

Data
Nash
BR

0 20 40 60 80 100 120 140
50

60

70

80

90

100

110

120

130

140

150

Private Info

B
id

Bids in Round 3

 

 

Data
Nash
BR

0 20 40 60 80 100 120 140
50

60

70

80

90

100

110

120

130

140

150

Private Info

B
id

Bids in Round 4

 

 

Data
Nash
BR

0 20 40 60 80 100 120 140
50

60

70

80

90

100

110

120

130

140

150

Private Info

B
id

Bids in Round 5

 

 

Data
Nash
BR

Figure 2: Average bids as a function of private information
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Figure 7: Bidding behavior of RL2 and TL1: theory and data
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A.4 Tables

Table 1: Average bids

Round 1 2 3 4 5

Mean Data 109.41 113.52 116.70 120.90 127.40

(1.28) (1.22) (1.22) (1.25) (1.40)

Mean NE 125.10∗∗∗ 115.39 106.85∗∗∗ 115.51∗∗∗ 128.16

(0.51) (0.81) (1.06) (1.12) (1.20)

Mean BR 109.75 113.69 113.03∗∗∗ 111.79∗∗∗ 108.86∗∗∗

(0.51) (0.61) (0.78) (0.80) (0.98)

Standard errors in parenthesis

*, **, ***: Significantly different from data at 90%, 95% and 98% confidence level

Table 2: Average gains

Round 1 2 3 4 5

Mean Data 12.33 10.69 9.19 8.38 6.27

(1.09) (0.96) (0.84) (0.67) (0.50)

Mean NE 10.03∗∗ 12.52∗ 14.95∗∗∗ 12.46∗∗∗ 8.50∗∗∗

(0.90) (0.82) (0.77) (0.61) (0.43)

Mean BR 17.40∗∗∗ 15.87∗∗∗ 12.76∗∗∗ 10.82∗∗∗ 6.04

(1.10) (0.96) (0.81) (0.69) (0.51)

Standard errors in parenthesis

*, **, ***: Significantly different from data at 90%, 95% and 98% confidence level
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Table 4: NE and FGLS regression per round and cluster

Cluster

Nash 1 2 3 4 5 6

Round 1

Constant 100 110.32∗∗∗ 91.06∗∗∗ 84.37∗∗∗ 127.29∗∗∗ 89.36∗∗∗ 43.56∗∗∗

(0.31) (0.36) (0.55) (0.20) (0.76) (0.72)

Priv 1 0.64∗∗∗ 0.65∗∗∗ 0.37∗∗∗ 0.73∗∗∗ 1.05∗∗ 0.70∗∗∗

(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)

F-test 8.53∗∗∗ 60.92∗∗∗ 54.57∗∗∗ 417.02∗∗∗ 12.82∗∗∗ 122.84∗∗∗

Round 2

Constant 53 80.12∗∗∗ 56.70∗∗∗ 54.82 96.27∗∗∗ 34.62∗∗∗ 17.17∗∗∗

(0.57) (0.82) (1.18) (0.33) (1.60) (2.16)

Priv 1.18 1.55∗∗∗ 1.41∗∗∗ 2.11∗∗∗ 1.04∗∗∗ 3.47∗∗∗ 2.91∗∗∗

(0.04) (0.06) (0.15) (0.02) (0.07) (0.18)

(Priv)2 0.007 −0.015∗∗∗ −0.006∗∗∗ −0.039∗∗∗ 0.000∗∗∗ −0.045∗∗∗ −0.057∗∗∗

(0.001) (0.001) (0.004) (0.001) (0.001) (0.004)

(Priv)3 -0.0001 0.0000∗∗∗ 0.0000∗∗∗ 0.0003∗∗∗ 0.0000∗∗∗ 0.0002∗∗∗ 0.0004∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

F-test 62.30∗∗∗ 8.07∗∗∗ 14.27∗∗∗ 497.74∗∗∗ 4.65∗∗∗ 36.68∗∗∗

Round 3

Constant -0.05 61.45∗∗∗ 46.87∗∗∗ 34.70∗∗∗ 73.37∗∗∗ −12.12∗∗∗ −67.12∗∗∗

(1.92) (1.22) (1.61) (0.49) (1.09) (2.96)

Priv 1.42 1.20∗∗∗ 0.74∗∗∗ 1.87∗∗∗ 1.14∗∗∗ 3.11∗∗∗ 4.54∗∗∗

(0.08) (0.06) (0.11) (0.03) (0.06) (0.17)

(Priv)2 0.004 −0.006∗∗∗ 0.004 −0.020∗∗∗ −0.005∗∗∗ −0.021∗∗∗ −0.047∗∗∗

(0.001) (0.001) (0.002) (0.001) (0.001) (0.003)

(Priv)3 -0.0001 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

F-test 743.91∗∗∗ 302.07∗∗∗ 42.26∗∗∗ 1249.15∗∗∗ 235.80∗∗∗ 10.36∗∗∗

Round 4

Constant 0.59 28.35∗∗∗ 11.05∗∗∗ 21.96∗∗∗ 36.66∗∗∗ 19.56∗∗∗ −29.08∗∗∗

(0.71) (0.75) (2.16) (1.78) (0.65) (2.64)

Priv 1.18 2.32∗∗∗ 1.87∗∗∗ 0.85∗ 1.70∗∗∗ 0.97∗∗∗ 3.72∗∗∗

(0.05) (0.06) (0.19) (0.12) (0.05) (0.16)

(Priv)2 0.007 −0.030∗∗∗ −0.017∗∗∗ 0.003 −0.015∗∗∗ 0.006 −0.054∗∗∗

(0.001) (0.001) (0.005) (0.002) (0.001) (0.003)

(Priv)3 -0.0001 0.0002∗∗∗ 0.0000∗∗∗ 0.0000 0.0001∗∗∗ 0.0000∗∗∗ 0.0003∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Pub 1 0.83∗∗∗ 0.92∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 0.99 0.76∗∗∗

(0.01) (0.00) (0.01) (0.01) (0.01) (0.02)

F-test 94.24∗∗∗ 5.05∗∗∗ 3.11∗ 272.42∗∗∗ 9.58∗∗∗ 6.77∗∗∗

Round 5

Constant 0 20.93∗∗∗ 11.79∗∗∗ 0.09 15.10∗∗∗ 0.61 -1.93

(0.29) (0.32) (0.54) (0.44) (0.50) (1.67)

Priv 1 0.81∗∗∗ 0.84∗∗∗ 0.72∗∗∗ 1.05∗∗∗ 0.91∗∗∗ 1.17∗∗∗

(0.00) (0.00) (0.01) (0.01) (0.01) (0.02)

Pub 1 0.92∗∗∗ 0.89∗∗∗ 0.93∗∗∗ 1.05∗∗∗ 1.02∗∗∗ 0.80∗∗∗

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

F-test 37.94∗∗∗ 7.25∗∗∗ 8.53∗∗∗ 237.38∗∗∗ 0.43 8.65∗∗∗

N 11 13 6 6 9 7

Standard errors in parenthesis

*, **, ***: Significantly different from NE at 90%, 95% and 98% confidence level



Table 5: Average gains by cluster

Cluster 1 2 3 4 5 6

Mean 9.56 10.12 10.46 4.73 12.31 6.97

Standard Deviation 5.39 6.38 5.55 4.57 6.35 5.77

Table 6: Normal Estimation of CE and CH models

All rounds Round 1 Round 2 Round 3 Round 4 Round 5

χ 0.21 0.00∗∗ 0.14∗∗∗ 0.52∗∗∗ 0.37∗∗∗ 0.01

Cursed AIC 37633 37498

Equilibrium BIC 37639 37529

LL 18816††† 18744

RL0 0.00 0.00 0.00 0.00 0.00 0.00

RL1 0.08 0.14 0.10 0.04 0.00 0.00

RL2 0.12 0.24 0.00 0.12 0.06 0.09

Cognitive TL0 0.20 0.00 0.13 0.40 0.20 0.05

Hierarchy TL1 0.55 0.00 0.45 0.43 0.61 0.00

TL2 0.05 0.63 0.32 0.01 0.13 0.86

AIC 31345 31237

BIC 31387 31450

LL 15665††† 15583

*,**,***: Significantly different from the next round at 90%, 95% and 98% confidence level.

†††: Significantly different from the unconstrained model at 98% confidence level.

39



Table 7: Classification of subjects by hierarchy type and cluster

Cluster

1 2 3 4 5 6 Total

TL0 4 6 10

TL1 7 12 9 28

CH TL2 1 1 2

RL0 0

RL1 6 6

RL2 5 1 6

Total 11 13 6 6 9 7 52

Table 8: Normal Estimation of CH with R∗L0

All rounds Round 1 Round 2 Round 3 Round 4 Round 5

R∗L0 0.05 0.09 0.05 0.04 0.04 0.04

RL1 0.06 0.04 0.06 0.03 0.00 0.00

RL2 0.10 0.24 0.00 0.10 0.01 0.06

TL0 0.20 0.00 0.13 0.40 0.20 0.05

TL1 0.55 0.00 0.45 0.43 0.62 0.00

TL2 0.05 0.62 0.32 0.00 0.13 0.85

AIC 31239 31132

BIC 31282 31346

LL 15613††† 15531

†††: Significantly different from the unconstrained model at 98% confidence level.
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