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Abstract 
 

 Despite well-documented shortcomings, hedonic and repeat sales estimators 
remain the most widely used methods for constructing quality controlled house price 
indexes and for assessing housing attribute capitalization into dwelling prices. 
Nonparametric estimators overcome many of the problems associated with these 
approaches by controlling for misspecified spatial effects while using highly flexible 
forms.  Despite these advantages, nonparametric procedures are still not used extensively 
for data analysis due to perceived difficulties associated with estimation and hypothesis 
testing.  We demonstrate that nonparametric estimation is both feasible for large data sets 
with many explanatory variables and offers significant advantages in terms of the 
information content of the estimates.  These features are demonstrated in an application 
of valuing capitalization of access to a rapid transit line into surrounding dwelling prices. 
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1. Introduction 

 Hedonic and repeat sales estimators remain the dominant tools of researchers 

interested in either aggregate house price trends or the capitalization of housing 

characteristics into dwelling prices.  Indeed, to a great extent what we understand of the 

behavior of housing markets, the value of public goods, the value of access, and the 

values of individual physical and structural dwelling attributes is derived from various 

specifications of hedonic models.  Aggregate house price indexes based on hedonic 

analyses are relatively rare due to data requirements, but repeat sales indexes -- which are 

derived from a hedonic specification  -- are the most widely quality controlled indexes for 

national and metropolitan housing markets (OFHEO, S&P/Case-Shiller).    The 

widespread adoption of these estimators as standard practice belies some significant 

drawbacks to these approaches – both theoretical and empirical.  Though these have been 

documented extensively, the continued use of these estimators reflects a perceived lack of 

alternatives.  In this paper, we argue that nonparametric approaches offer both viable and 

attractive alternatives for use in housing market analyses.    

Nonparametric models offer significant advantages for hedonic price function 

estimation.  For example, functional form flexibility is a common feature of all 

nonparametric procedures, but one that is largely ignored in the practice of hedonic 

analysis.   In addition, nonparametric procedures are readily adaptable to the special 

requirements of spatial data sets, allowing coefficients to vary by submarket over both 

space and time.  Unlike standard parametric spatial models, this combination of 

functional form flexibility and spatially varying coefficients helps to reduce spatial 

autocorrelation without imposing arbitrary contiguity matrices or distributional 
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assumptions on the data.  Despite these advantages, nonparametric procedures are still 

not used routinely in analyzing housing data sets.  Several factors account for this 

apparent unpopularity, including perceptions that nonparametric estimation procedures 

(1) are difficult to implement, (2) produce results that are difficult to interpret, (3) are 

wasteful of degrees of freedom, and (4) are more appropriate for prediction than for 

hypothesis testing. 

 In this paper, we use a combination of Monte Carlo techniques and a 

representative housing data set to illustrate how nonparametric estimation procedures can 

readily be used in formal hypothesis testing and as an informal means of checking a 

model specification.  Moreover, we show that standard hedonic analysis is nested within 

the more general locally-weighted regression (LWR) framework and that the inherent 

flexibility of LWR allows for the capture of a much richer set of housing market 

dynamics.  That is, where the standard hedonic approach generally requires a single 

implicit price for housing attributes and local amenities, locally-weighted regression 

provides a set of prices that can in turn be used to examine the fundamentals of 

differential pricing across submarkets – for example, the value of commuter rail access 

may be high in neighborhoods where residents commute to work in the CBD, and it may 

be low in places where people incur the noise and nuisance of the train line while 

commuting elsewhere.   The possibility of differential pricing is precluded in standard 

applications of hedonic analysis, and with it is the opportunity to examine local housing 
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market fundamentals relevant to both policy and our basic understanding of housing 

markets.1 

Our focus is on locally weighted regression (LWR), which under various 

pseudonyms has become the most commonly employed nonparametric procedure for 

analyzing spatial data.  We show that kernel regression and the conditionally parametric 

model are special cases of LWR, while the estimator that has come to be known as 

“geographically weighted regression” is a special case of the special case.   Using Monte 

Carlo procedures, we show that LWR uses far fewer degrees of freedom than fully 

nonparametric estimation while achieving impressive degrees of predictive accuracy.  

Following the seminal work of Cleveland and Devlin (1988), we show how LWR can 

readily be used to conduct formal hypothesis tests for large data sets. 

 Using a representative data set of single-family home sales in Chicago for 2000, 

we show how a combination of nonparametric and semi-parametric procedures can be 

used to assist in the specification of a hedonic house price function.  Our case study 

focuses on the valuation of access to an important local amenity, Chicago’s elevated 

rapid transit line (the “EL”) – though any housing attribute could be analyzed 

analogously.  While the magnitude of the coefficient on distance to the nearest EL stop is 

reduced significantly after taking into account local spatial effects by either LWR or 

through census tract fixed effects, LWR uses far fewer degrees of freedom than the fixed-

effect method.  Though counterintuitive, the local regression’s imposition of smoothness 

greatly reduces the information consumed in each regression.  Maps of the LWR 

(reported below) coefficients reveal that proximity to the EL is not valued equally 

                                                 
1 Of course, standard hedonic analysis can be extended to allow for spatially-varying implicit prices using 
interactions with geographical dummy variables.  However, it is generally not feasible to estimate models 
with a large number of interactions due to a lack of degrees of freedom.  This is discussed in detail below. 
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throughout the city.  In higher-income neighborhoods on the north and southwest sides of 

the city, proximity to EL stops is highly valued for the access it provides to Chicago’s 

central business district.  In lower-income neighborhoods on the west and south sides of 

the city, proximity to the EL appears to be a disamenity.2  In these neighborhoods, the EL 

is lined by vacant lots and failing businesses, which leads to a positive correlation 

between house prices and distance from the EL.  Thus, the nonparametric LWR estimates 

reveal a source of model misspecification that would be far from obvious in a more 

traditional parametric estimation strategy.  Moreover, in a traditional specification the 

underlying spatial variation in pricing would not be available for subsequent analysis in 

which the determinants of the various values of access to the EL could be studied. 

The implications of such misspecification are significant because so much of what 

we understand about the market valuation of spatially varying amenities and disamenities 

is based on capitalization studies that use standard hedonic analysis.  We show that 

typical approaches to assessing the value of access to the EL yield a population average 

that is not readily interpretable for use in guiding policy.   That is, standard hedonic 

analysis finds a significant relationship between access to the EL and dwelling prices, but 

this average effect masks widely-varying local valuations that appear to have ready 

explanation via standard microeconomic theory.  

The paper is organized as follows.  In Section 2, we lay out the mechanics of 

nonparametric analysis and contrast three particular methods with standard hedonic 

analysis: locally-weighted regression, kernel regression, and conditionally parametric 

                                                 
2 Bowes and Ihlanfeldt (2001) estimate the components of access, finding that distance to rail stations 
contains both amenities (lower commute times, access to retail) and disamenities (congestion, crime).  This 
disaggregation of the coefficient on distance to stations is not the focus of this paper, but offers one 
explanation as to the economic forces that would generate spatially-varying coefficients. 
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regression.  In Section 3, we discuss hypothesis testing and degrees of freedom 

calculations in these contexts.  In Sections 4 and 5, we illustrate the statistical 

characteristics of the three nonparametric approaches using both Monte Carlo simulations 

and representative data from Chicago.  Section 6 concludes. 

 

2. Nonparametric Estimation Procedures 

 The standard parametric specification of a hedonic housing price function is 

i i iy X uβ ′= + , where yi is the observed sales price for observation i (or more commonly, 

the natural logarithm of sales price), Xi is a vector of explanatory variables, and ui is an 

error term.  The vector Xi is typically divided into variables representing characteristics of 

the home itself, Si, and characteristics of the location, Ni.  Examples of the former include 

square footage and lot size, while examples of locational characteristics include distance 

from the city center or indicators of neighborhoods and school districts. 

 The classical statistical assumption of a known model specification is always 

violated in practice.  At least since Rosen’s (1974) seminal paper developing the theory 

of hedonic price functions, empirical researchers have recognized that hedonic house 

price functions are likely to be nonlinear in structural characteristics, and there is no 

reason to expect prices to be linear in continuous measures of locational variables such as 

distance from the city center.  Due to a lack of arbitrage opportunities for a fixed and 

immalleable housing stock, the housing characteristics’ contributions to price may vary 

over space – i.e., there may be interactions between the S and N variables.3  This 

                                                 
3 The existence of submarkets and their causes are well-reported; see, for example Goodman and 
Thibodeau (2007, 1997) and their bibliographies for others.  One feature of submarkets is variation in 
implicit prices across housing market segments – something not generally allowed for in common 
applications of hedonic analysis. 
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combination of nonlinearity and spatial heterogeneity suggests that the standard 

parametric model is a particularly convenient and simple specification of the more 

general model ( )i i iy f X u= +  or ( , )i i i iy f S N u= + . 

In the past, the Box-Cox transformation was employed routinely in hedonic price 

estimation (e.g., Pollakowsi and Halvorsen (1981)).  Though generally lacking theoretical 

basis,  polynomial terms or spline functions are still used commonly to approximate the 

unknown function with a parametric equation.  These steps toward statistical flexibility 

lead naturally to nonparametric procedures which have begun to be used in various 

forms.  The most commonly employed nonparametric procedures are (1) locally weighed 

regression, (2) kernel regression, and (3) conditionally parametric regression (CPAR), 

which includes a special case that is sometimes called geometrically weighted regression.  

Each of these procedures fits individual regressions targeted to specific points, 

with more weight placed on observations that are closer to the target.  “Closer” can be 

defined narrowly in terms of geographic distance, or in terms of more general measures 

of distance among the full set of explanatory variables.  For example, the distance 

function could be based on search theory – arguing that dwellings that share attributes are 

likely to be bid on by the same set of agents and therefore have similar attribute pricing.  

In this case, the distance function could be defined across overall size, number of 

bedrooms, and location:  e.g., in the regression at the observation of a 2000 square foot, 

three bedroom house in Elmhurst, other sales of 2000 square foot homes with 3 bedrooms 

nearby would get more weight than sales that were in other parts of the Chicago area 

(physical “closeness”) or were smaller or larger (attribute “closeness”).  LWR is the most 

general of the three procedures, with the kernel regression and CPAR being special cases. 
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Locally Weighted Regression 

Urban applications of the LWR estimator are derived from the seminal paper by 

Cleveland and Devlin (1988).  The first direct applications of the procedure to urban-

related issues are Stock (1991) and Meese and Wallace (1991).  Let the target for the 

nonparametric estimator be a home with structural and locational characteristics given by 

the vector X.  The LWR estimator is derived by minimizing equation (1) with respect to α 

and β: 

   ( )( )2
1

n
i

i i
i

X Xy X X K
h

α β
=

−⎛ ⎞′− − − ⎜ ⎟
⎝ ⎠

∑    (1) 

The kernel function ( )K ψ  determines the weight that observation i receives in 

estimating the value of y at target point X.   Common choices for this function when X 

consists of a single variable include: 

Name ( )K ψ  Domain 

Rectangular 1 1ψ <  

Triangular 1 ψ−  1ψ <  

Epanechnikov 21 ψ−  1ψ <  

Bisquare ( )221 ψ−  1ψ <  

Tricube ( )331 ψ−  1ψ <  

Triweight ( )321 ψ−  1ψ <  

Gaussian 2.5e ψ−  ψ−∞ < < ∞  

 

A product kernel is typically used to define ( )K ψ  when the model includes more than 

one explanatory.   For example, with two explanatory variables the weight function 
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would be ( ) ( ) ( )1 1 2 2K K Kψ ψ ψ= , where 1 1
1

1

iX X
h

ψ
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

, 2 2
2

2

iX X
h

ψ
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

, and the 

number subscript indicates the individual variable.  Though it is not necessary, the same 

kernel function is typically used for both explanatory variables in this situation. 

 All of the kernels share the important feature of placing more weight on nearby 

observations.  Partly for this reason, the choice of kernel weight function has very little 

effect on the results.  The choice of bandwidth, h, is much more important.  The 

bandwidth determines how rapidly the weights decline with distance and how many 

observations receive positive weight when constructing the estimate.  High values of h 

produce more smoothing than low values.    The bandwidth may be fixed at one value for 

all data points, in which case the number of observations receiving some weight in 

estimation varies depending on how many observations are near the target point.  

Alternatively, the value of h may vary by target point such that a fixed number of 

observations receive positive weight for each target.  In this latter case, the bandwidth is 

generally referred to as the “window size” because it determines the size of the opening 

to observations to be included in estimation.  It should be noted that ordinary least 

squares (OLS) is a special case within this framework:  it is an application of LWR with a 

rectangular kernel and a bandwidth of 1; all the observations would be used and would be 

equally weighted so that the OLS coefficients would be recovered at each point. 

 There is little difference between a fixed bandwidth and a fixed window size if the 

observations are distributed uniformly over space.  However, most spatial data sets 

combine regions with many observations with others where the data are sparse.  A fixed 

bandwidth leads to excessive smoothing in areas where many observations are available 

for estimation near a target point, and it leads to highly variable results in areas with 
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sparse data.  Thus, the “nearest neighbor” approach of a common window size for all 

target points is generally preferable to a fixed bandwidth for analyzing spatial data.4 

 The LWR model simplifies to standard weight least squares (WLS) estimation 

with one regression for each target point.  After writing ( )1i iZ X ′=  and ( )θ α β ′= , 

the LWR estimator is: 

( ) ( ) ( )
1

1 1

ˆ
n n

i i i i i i
i i

X K Z Z K Z yθ ψ ψ
−

= =

⎛ ⎞′ ′= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑     (2) 

which is simply the vector of coefficients from a regression of wiyi on wi and wiXi, where 

wi = ( )1/ 2
iK ψ .  The predicted value of y at the target point is simply ( )ˆZ Xθ′ , i.e., the 

standard prediction evaluated at the target point, X.  The coefficients on the explanatory 

variables, ( )ˆ Xβ , represent the estimated marginal effects at the target point.  Standard 

errors are also easy to evaluate for ( )ˆ Xθ ; see Pagan and Ullah (1999) or McMillen 

(2004a) for details.   

 

Kernel Regression 

 Kernel regression is a special case of LWR in which the objective function is: 

( )2
1

n
i

i
i

X Xy K
h

α
=

−⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑      (3) 

The estimated values of y at the target point X are: 

                                                 
4 Note that the window size need not be a fixed function either.  Observations can be drawn by distance or 
by number of nearest neighbors, as described.  Alternatively, jurisdictional boundaries or geographic 
features can be imposed.  An obvious application of such rules would be school district boundaries where 
service flow can vary discontinuously in space.  
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( )
( )

( )
1

1

ˆ

n
i i

i
n

i
i

K y
y X

K

ψ

ψ

=

=

=
∑

∑
     (4) 

The marginal effects are estimated by taking the derivative of equation (4) with respect to 

X.  Equation (4) can be constructed by regressing wiyi on wi , where wi = ( )1/ 2
iK ψ .  

Thus, kernel regression is identical to LWR, but with only a constant term included in the 

WLS regression.  The advantage of LWR over kernel regression is that the additional 

explanatory variables lead to more accurate estimates in regions with sparse data.  LWR 

estimates are typically less variable than kernel regression estimates, allowing larger 

bandwidths to be used in estimation.  Thus, LWR estimation is generally preferable to 

kernel regression for analyzing spatial data. 

 

Conditionally Parametric Regression 

 Although the LWR and kernel regression models can be estimated using WLS 

regression techniques, the models are actually fully nonparametric.  The estimators use a 

local linear function to approximate a function that is constrained only to be smooth and 

continuous.  Each variable’s marginal effects depend on the values taken by all other 

variables in the model.  As will be seen in Section 4, the generality of the models comes 

at the cost of degrees of freedom.  Since the variance of the LWR and kernel regression 

models increases rapidly as the number of explanatory variables increases, these 

estimators are typically applied only to models with relatively few explanatory variables.   

 The conditionally parametric model is a special case of LWR in which degrees of 

freedom are preserved by making the model parametric in some variables while other 
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variables are constrained only to have smooth and continuous marginal effects.   The 

CPAR model applies when the vector X can be divided into portions that are fully 

nonparametric (X1) and conditionally parametric (X2), in which case the model becomes: 

( ) ( )1 1 2 1 2iy X X X uβ β ′= + +     (5) 

For fixed values of X1, this model is a standard linear equation, but each of the 

coefficients varies with X1.  The model is similar in spirit to the spatial expansion model 

of Casetti (1972), in which a linear model’s coefficients are expressed as function of 

spatial data set’s geographic coordinates.  The model is considered in detail by 

Cleveland, Grosse, and Shyu (1992) and Cleveland (1994).  A more general version of 

the model is also analyzed in Hastie and Hibshirani (1992).   

 Although the CPAR model is similar to the semiparametric model (Robinson, 

1988) in that some explanatory variables are fully nonparametric while others have 

parametric, the CPAR model is more general than the semiparametric model.  The 

semiparametric model is  

( )1 1 2 2iy X X uβ β ′= + +     (6) 

which differs from the CPAR model in that the β2 is constrained not to vary with X2.  The 

approaches can be combined by allowing one set of variables to be fully parametric, 

another to be fully nonparametric, and a third to be conditionally parametric on the 

second set of variables. 

 The objective function for the CPAR model is a modification of equation (1): 

( )( )2 1 1
1 1 1 2 2

1

n
i

i i i
i

X Xy X X X K
h

α β β
=

−⎛ ⎞′′− − − − ⎜ ⎟
⎝ ⎠

∑    (7) 

Equation (6) leads to the following estimates: 
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( ) ( ) ( )
1

1 1
1 1

ˆ
n n

i i i i i i
i i

X K Z Z K Z yθ ψ ψ
−

= =

⎛ ⎞′ ′= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑   (8) 

where 1 1
1

i
i

X X
h

ψ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
; Z includes a constant, X1, and X2; and ( )1 2θ α β β ′= .  

Thus, the model is exactly the same as LWR except that the kernel weight function only 

includes the variables in X1.  Distance is defined in terms of X1 alone, but all variables are 

included in the WLS regression.5  

  The CPAR is a natural candidate for many spatial data sets.  For example, 

in a hedonic study we might expect house prices to be linear in the structural 

characteristics at any given location, but the intercept and marginal effects may vary over 

space.  In this case, a natural specification is to define X1 to include latitude and longitude 

while X2 includes the structural characteristics.  Although locational variables such as 

distance from the city center are implicit functions of X2 in this situation, they can also be 

included in X1 if their marginal effects are conditionally parametric at any given location.  

In this case, the kernel function might be specified as 1 1 2 2i iz z z zK K
h h
− −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, where z1 

and z2 are the geographic coordinates standardized to have unit variance.  This kernel 

function is used to define the weights for a WLS regression of y on X1, z1, and z2.  The 

estimated coefficients for all variables with vary over space, but only the geographic 

coordinates are used to define target points for estimation. 

                                                 
5 An alternative way to derive the same estimator is discussed in McMillen (2004a).  When estimating 
multivariate models, most researchers use product kernels, such as ( ) ( ) ( )1 1 2 2K K Kψ ψ ψ=  in the two-
variable case.  If a rectangular kernel is used for X2 with the window width set to the maximum of all 
available observations, then the LWR estimator simplifies to the CPAR model.  This specification of the 
kernel is appropriate if the function is nonlinear in X1 while being conditionally linear in X2, which is the 
assumption behind the CPAR model.   
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 What has come to be known as geographically weighted regression (GWR) is a 

special case of this special case of LWR estimation.  Rather than using a general function 

of latitude and longitude to define the kernel weights, the GWR weights are based on the 

straight-line distance between observation i and the target point (di) .   In addition, the 

geographic coordinates are typically omitted from the list of explanatory variables.  Thus, 

the objective function for GWR estimation is the following modification of equation (7); 

( )22 2
1

n
i

i i
i

d
y X K

h
α β

=

⎛ ⎞′− − ⎜ ⎟
⎝ ⎠

∑     (9) 

The model is estimated using a WLS regression of y on a constant and the variables in the 

vector X2.  The GWR model appears to have first been used in McMillen (1996) and 

Brunsdon, Fotheringham, and Charlton (1996).  It has since been used in a series of 

papers by both sets of authors, although McMillen uses the term LWR instead of GWR to 

recognize that it is merely an application of the procedure developed originally by 

Cleveland and Devlin (1988).  It is limiting to view GWR as an estimator in its own right; 

it is a special case of LWR and CPAR estimation that only allows spatial variation in 

marginal effect estimates.  It does not allow for nonlinearities in other variables, and it 

uses a special kernel that is based on a circle around the target point, which limits its 

application to urban housing submarkets which can be organized in decidedly 

asymmetric shapes.  Recognizing its status as a special case makes it easier to consider 

useful generalizations while providing a link to other literatures. 
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3. Hypothesis Testing in Nonparametric Estimation 

 As target points for nonparametric estimation typically include every data point, a 

grid covering the relevant geographic area, or simply a set of interesting points, LWR 

hypothesis testing is more nuanced than is the case with conventional estimators.6  

Whereas standard hedonic approaches produce one population parameter, the outcome of 

the LWR is a set of estimates for each regressor.  With conventional estimators, standard 

hypothesis testing involves asking whether the regressor adds significantly to the 

explanatory power of the model – whether the coefficient associated with it is 

significantly different than zero. With nonparametric models – because each target point 

has a different set of coefficient estimates – two types of hypothesis testing are possible.  

The first is the analogue to traditional hypothesis testing, regarding the added explanatory 

power of a regressor.  The second is more localized, asking where the regressor is 

statistically significant.   

The analog to traditional hypothesis testing is straightforward.  Covariance matrix 

estimates are available for each estimate, but a full covariance matrix for all estimated 

coefficients is hard to construct because the estimates are not independent across target 

points.  Nonetheless, Cleveland and Devlin (1988) show that good approximations are 

available for tests of the null hypothesis that a variable (or set of variables) adds no 

explanatory power to a nonparametric.  The test is comparable to a standard F-test, and 

has nearly the same form. 

                                                 
6 Although nonparametric models are often estimated with each observation as a target point, estimation 
time can be reduced substantially by estimating the model over a grid of target points or for a subset of the 
observations.  Loader (1999) discusses alternative interpolation procedures for constructing estimates at 
each observation when the number of target points is less than the number of observations. 
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 The key to constructing Cleveland and Devlin’s F-test is to note that all of the 

estimators discussed in the previous section – OLS, LWR, kernel regression, CPAR, and 

GWR – have the same linear form Y = LY + u, where Y is the nx1 vector of explanatory 

variable values, u is the vector of residual terms, and L is an nxn matrix.  The vector of 

residuals is ( )u I L Y= −  and the residual sum of squares is ( ) ( )u u Y I L I L Y′′ ′= − − , 

which can also be written as Y RY′ , where ( ) ( )R I L I L′= − − .  In the standard linear 

regression model, ( ) 1L X X X X−′ ′=  and ( )I L−  is a symmetric, idempotent matrix such 

that ( ) ( ) ( )I L I L I L′− − = − .  This feature of the OLS estimator greatly facilitates 

hypothesis testing because it implies that the variance will follow a central 2χ  

distribution when the errors are normally distributed.   

 The statistical theory is more complicated for the nonparametric estimators 

because ( )I L−  is neither symmetric nor idempotent.  However, Cleveland and Devlin 

(1988) note that the distribution can be approximated readily.  Let Rr represent the value 

of ( ) ( )I L I L′− −  under the null (or “restrictive”) model (e.g., with one variable deleted 

from the list of explanatory variables), and let Ra the value under the alternative.  Next, 

define the following values:  1 ( )atr Rδ = , 2 ( )a atr R Rδ = , ( )1 r atr R Rυ = − , and 

( )( )2 r a r atr R R R Rυ ⎡ ⎤= − −⎣ ⎦ .  The counterpart to the standard F-test is then: 

( )
( ) ( )1 2 2

1 2 1 2
2

/
~ / , /

/
r a

a

Y R Y Y R Y
F

Y R Y
υ

υ υ δ δ
υ

′ ′−
′

   (10) 

Examples of the application of this approach include McMillen (1996) and McMillen and 

McDonald (1997).  In small samples, the degrees of freedom parameters can be 
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calculated directly, but 2δ  and (particularly) 2υ are difficult to calculate for large 

samples because they require the multiplication of large matrices.   

Fortunately, Loader (1999) shows that a simple approximation is quite accurate 

for the degrees of freedom calculation.  Define 1 ( )d tr L=  and 2 ( )d tr L L′= .  Then the 

degrees of freedom used in estimation by the nonparametric estimator is approximately 

equal to 1 22d dκ = − .  Using this simplification, the F-test becomes simply: 

( ) ( )
( ) ( ) ( )/

~ ,
/

r a a r
a r a

a a

Y R Y Y R Y
F n

Y R Y n
κ κ

κ κ κ
κ

′ ′− −
− −

′ −
   (11) 

where rκ and aκ  are the degrees of freedom used in the null and alternative models.  

This F-test has nearly the identical form as a standard F-test, and all of the terms are easy 

to calculate.  To form counterparts to standard t-statistics, equation (11) can be calculated 

with each variable dropped from the model.  The prob-values from these tests are 

analogous to the results of a standard t-test of the null hypothesis that the coefficients 

equals zero.  In other words, equation (11) can be used to test whether an explanatory 

variable (or a set of variables) adds any explanatory power to the nonparametric model. 

 Just as hypothesis tests of linear regression models are conditional on the model 

specification, the results of a nonparametric model are conditional on the list of 

explanatory variables and the bandwidth or window size.  The voluminous literature on 

bandwidth selection is still growing.  A common method for choosing the bandwidth or 

window size is cross validation:  each observation is used as the target point, and the 

estimated value of y for observation i is constructed after omitting the ith observation 

from the model.  The computer-intensive cross-validation approach is similar to out of 

sample forecasting.  Following work by Craven and Wahba (1979), Loader (1999) shows 
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that the less computer-intensive generalized cross-validation score (GCV) closely 

approximates the results of the cross-validation approach: 

( )

( )

2

1
2

1

ˆ
n

i i
i

y y
GCV n

n d
=

−
=

−

∑
    (12) 

where ˆiy  is the predicted value of yi  and d1 = tr(L).  The degrees of freedom correction 

penalizes smaller bandwidths without requiring the model to be re-estimated for each 

observation. 

  Equation (11) does not produce confidence intervals for a variable’s marginal 

effect on the dependent variable.  Simple summary statistics such as means and quintiles 

or simply maps can be used to summarize the coefficient estimates from the 

nonparametric models.  Alternatively, bootstrap procedures can be used to construct 

confidence intervals for any statistics calculated after estimating the model.  Bootstrap 

standard errors estimates are particularly easy to calculate with procedures such as the 

wild bootstrap of Härdle (1990) because once the matrix L is calculated, new estimates 

can be constructed trivially with repeated bootstrap samples of y.  McMillen (2004b) uses 

this estimator in a LWR analysis of employment densities.   

 In this paper, we use semi-parametric estimation as an alternative method of 

summarizing the average effect of a single variable.  When a single variable z enters the 

model parametrically, the estimating equation can be written as ( )i i i iy f X z uγ= + + .  

Following Robinson (1988), estimation proceeds in the following steps:  (1) use any of 

the nonparametric estimators to regress y on X and each z on X , form the residuals (ey 

and ez), and (2) use OLS to regress ey on ez.  The coefficient on ez in the second-stage 

linear regression is the estimate of γ, and the standard error from the regression can be 
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used to form confidence intervals.  The semi-parametric model provides an estimate of 

the conditional expectation of y given z after controlling in a general, nonparametric way 

for the effects of all other variables.  Semi-parametric estimation is a simple combination 

of nonparametric and linear regression procedures, and it provides a direct analog to the 

standard parametric coefficient and standard error of a linear model. 

 

4. Monte Carlo Results 

 A series of limited Monte Carlo experiments illustrates some of the features and 

advantages of LWR estimation.  The basis for the experiments is a stylized model of an 

urban area in which the dependent variable declines with distance from the city center.  

All observations are arranged along a single line running through the city center.  Points 

along the line (n = 2000) are drawn from a uniform distribution ranging from x = -20 to x 

= 20, i.e., a U(-20,20) distribution.  The base function is linear for x < 0, with y = 11.25 + 

.5x + u.  The function is more complicated for x>0:  y = 10 + 1.25sin(z) + 1.25cos(z) -  .5x 

+ .5x2/1000 + u, where 2 / 20z xπ= .  The base function is shown as the solid line in 

Figure 1.  It looks much like a population density function in a monocentric city in which 

log-densities decline much more rapidly with distance from the city center on the east 

side of the city.  All estimates are based on a single draw of errors from a normal 

distribution with a mean of zero and a variance of 16.67.  The value for the variance 

implies that the R2 will be approximately 0.67 when the function is correctly specified. 

 The dotted line in Figure 1 shows the estimated line from a LWR model with y as 

the dependent variable, |x| (i.e., distance from the city center) as the explanatory variable, 

and weights based on the geographic distance between each observation j and the target 
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point i, or i jx x− .  Thus, this model can be thought of as a LWR, CPAR, or GWR 

model.  We use a tricube weight function with the window size chosen by minimizing the 

value of GCV.   The GCV criterion indicates that 20% of the observations should be 

given positive weight in estimating the value of y at any target point xi. The estimates 

closely approximate the true line even though the base model is linear in x.  The functions 

are somewhat noisy west of the city center where the true function is linear. This problem 

could be eliminated by choosing a larger size on the west side.   

 Figure 2 shows that the form of the kernel weight function has virtually no effect 

on the results.  Six different kernels are shown – the rectangular, triangular, 

Epanechnikov, bisquare, tricube, and triweight kernel.  In each case, the window size is 

chosen by minimizing the GCV value.  The estimated values are so close across kernels 

that it is virtually impossible to discern one from another.  

 Figure 3 shows that the estimates are affected by the window size.  When the 

window size is set to 50% rather than the 20% indicated by the GCV, the estimated 

function is close to being linear on both sides of the city.  The estimates approximate the 

true values well on the east side, but they lead to too much smoothing on the west side.  

The estimates are noisy on both sides of the city when the window size is 10%. 

 Optimal window sizes are larger when the goal is to estimate marginal effects 

rather than to simply predict the dependent variable accurately (Pagan and Ullah, 1999).  

Figure 4 illustrates this point using the LWR estimator evaluated at two window sizes, 

20% and 40%.  The solid line shows the marginal effect of distance from the city center 

based on the true underlying function.  When the function is close to linear (for x<0), the 

20% window size produces noisy derivative estimates even though the GCV criterion 
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indicated that 20% is the optimal window size for predicting y.  The smaller window size 

appears less noisy on the east side of the city where the function is nonlinear.  Over the 

full function, it appears that a window size of 40% is more accurate than the smaller 

window.   

 It is worth emphasizing that the only information provided to the LWR estimator 

is that y is a function of x.  With no knowledge other than the correct explanatory 

variable, the LWR model does an impressive job of tracking a fairly complicated 

function.  The GCV version of cross validation is easy to calculate and provides a useful 

guide for choosing the window size when the goal is to predict the dependent variable 

accurately.  The optimal window size is much larger – perhaps double – when the goal of 

estimation is to estimate the marginal effect of the explanatory variables.   

 The base parametric model implicitly uses six degrees of freedom – a constant, x, 

and interaction terms between an east side dummy variable and x, x2, sin(z), and cos(z).  

(It would use seven degrees of freedom if the constant term were not constrained to be 

equal across the two sides of the city.)  The first column of results in Table 1 shows the 

number of degrees of freedom that are used to estimate the CPAR version of the model in 

which |x| is the single explanatory variable and x is used to form the tricube kernel 

weights.  With the GCV window size of 20%, the LWR model uses approximately 11 

degrees of freedom to obtain virtually the same level of predictive accuracy as the 

underlying parametric function.  Even a very narrow 10% window size uses only about 

21 degrees freedom.  For this simple model with one explanatory variable, the degrees of 

freedom are about the same for both the CPAR and kernel regression models. 
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To compare the LWR model with a fixed effects specification, we need to form 

the Monte Carlo counterparts to geographic areas such as census tracts.  Since census 

tracts comprise areas with approximately equal populations, a natural choice for the 

Monte Carlo experiments is a series of equally space intervals along the x-axis of the 

diagrams.  In practice, the number of geographic areas would likely be determined by 

political jurisdictions or census boundaries.  Here we have the luxury of allowing the data 

to choose the optimal number of fixed effects, which places the fixed effects estimator in 

its best possible light.  Using the GCV criterion to choose the number of intervals for the 

x, the optimal fixed effects estimator uses 15 degrees of freedom to estimate the model – 

an intercept, distance from the CBD, and 13 dummy variables indicating the interval for 

x.  Thus, even an optimal number of fixed effects uses more degrees of freedom than the 

LWR model.  Figure 5 shows why:  the fixed effects estimator is forced to approximate a 

smooth function with a series of line segments with identical slopes.  While a piecewise 

linear function can approximate a smooth surface, it is less accurate than a flexible 

functional form that does not impose an incorrect specification with marked 

discontinuities.   

 The remaining columns of Table 1 show how the degrees of freedom vary as the 

number of explanatory variables increases.  The additional explanatory variables are 

drawn independently from U(0,1) distributions.  The base model remains the same as 

before since the point is simply to illustrate how degrees of freedom increase as the 

number of explanatory variables increases in estimation.7  The number of degrees of 

                                                 
7 For the CPAR model, the tricube function remains a function of x alone, but the new variables are 
included as explanatory variables.  For the kernel regression model, both x and the additional variables are 
included as explanatory variables and in the tricube weight function. 
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freedom increases rapidly as the number of explanatory variables increases and the 

window size declines.  CPAR greatly conserves on degrees of freedom by confining the 

additional variables to the conditionally parametric part of the model.  These results show 

that (1) nonparametric estimators are not profligate users of degrees of freedom when 

window sizes are in the standard 20%-50% range, and (2) the CPAR method has 

significant advantages for spatial modeling when the primary source of nonlinearity is 

spatial variation in the coefficients of an underlying linear model. 

 

5. Hedonic Estimates 

 In this section, we illustrate the benefits of nonparametric estimation in a typical 

hedonic price function setting.  The data set and empirical question are similar to those in 

the study by McMillen and McDonald (2004):  how do house prices vary with proximity 

to a rapid transit line?  The data set includes all sales of single family homes in 2000 that 

were within one mile of Chicago’s elevated train line (the “EL”).  The sales data are 

merged with assessor’s data to obtain standard housing characteristics, including building 

area; lot size; the number of rooms, bedrooms, and bathrooms; and dummy variables 

indicating that the home has a brick exterior, fireplace, central air conditioning, and a 

garage.  After geo-coding the data, we used a GIS program to measure distance from 

Chicago’s city center (at the intersection of State and Madison streets) and distance from 

the nearest EL stop.  We also constructed dummy variables indicating that a home is 

within a block of a rail line or an EL line.  While access to a stop on the EL is presumably 

an amenity, the noise associated with a location close to the line itself is likely to lower 
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prices.  Rail and EL lines often run through commercial and manufacturing areas, which 

also may act as disamenities for homeowners. 

 Descriptive statistics are shown in Table 2.  The base hedonic specification is 

Model 1 in Table 3.  With the natural logarithm of sales price as the dependent variable 

and a combination of structural and locational characteristics as explanatory variables, 

this specification is entirely standard with the exception of longitudes and latitudes.  

Including the geographic coordinates accounts for broad geographic trends and serves as 

a link to the general version of the LWR model.  The base model explains a respectable 

63.1% of the variation in log-sales prices.  Most of the results are standard, with prices 

increasing with square footage, lot size, and with the presence of such amenities as 

fireplaces, central air conditioning, and a garage.  The important result for our purpose is 

the coefficient on distance from the nearest EL stop:  prices are approximately 13.7% 

lower one mile from an EL stop than at the station.  This is the figure that is used to 

construct a measure of the potential benefit of building a new EL line or opening a new 

stop (Cervero 1997, 2001). Hedonic estimates can be sensitive to the specification, 

particularly to the specification of locational effects.  A common method of controlling 

for local fixed effects is the inclusion of census tract dummy variables.  Model 2 of Table 

3 adds 466 census tract fixed effects to the base regression.  Not surprisingly, the results 

change substantially.  Although the R2 rises to 0.870, several variables that had been 

quite significant drop to insignificance.  After controlling for census tract fixed effects, 

the point estimate for distance to the nearest EL stop falls to -0.044 and it is not 

statistically different from zero.  However, 483 degrees for freedom are required for this 

model, or about 13% of the number of observations in the data set.  Several of the census 
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tracts have only one or two observations.  In a Monte Carlo setting, the estimator 

represented by Model 2 would have a very high variance. 

 There is an additional point to be made here about common practice and the use 

of Census tract fixed effects.  It is not uncommon to see Census fixed effects used to 

absorb omitted spatial variables.  The problem with this approach is that Census tracts are 

fixed in space – broad spatial patterns will be lost in regressions that use that use these 

fixed effects.  In the fixed effects regression above, not only are 483 degrees of freedom 

used, the distance variable now captures within-tract variation in housing price due to 

proximity.  Given the irregular shapes of Census tracts and potential for broad non-

linearities across them, it is no surprise that the distance variable is not significant.  

However, it would be inappropriate to conclude that distance is not a significant from 

such regressions; rather, an auxiliary regression would be needed that regressed Census 

tract fixed effects on the distance from the tracts to the stations.  This step is generally not 

undertaken. 

 Tables 4 and 5 show CPAR and semi-parametric estimates at two window sizes, 

25% and 100%.  All of the models are estimated using a tricube kernel function with 

straight-line distance between observations as its sole argument.  Each observation is 

used as a target point for estimation.  This approach is similar in spirit but more general 

than the fixed effects specification.  While it allows for spatial variation in the house 

price surface by including the geographic coordinates as explanatory variables, it also 

allows all estimated coefficients to vary smoothly over space.  Separate semi-parametric 

models are estimated for each explanatory variable.  The listed explanatory variable is 

constrained to enter the model parametrically, while all other variables enter the model in 
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CPAR form with spatially varying coefficients.  The tables show (1) the average 

coefficients from the nonparametric CPAR models and (2) parametric coefficients from 

the semi-parametric models.  Sample standard deviations are listed for the CPAR models, 

along with the Cleveland-Devlin (1988) F-test values for the null hypothesis that the 

variable adds no explanatory power to the regression. 

 Both Tables 4 and 5 suggest that the coefficients for the structural characteristics 

are quite stable on average and produce results that are similar to their counterparts in 

Table 4.  For example, the average coefficient for the log of building area is 0.315 across 

the 3705 CPAR estimates when the window size is 25%, with a standard deviation of 

0.088.  The semi-parametric estimate is 0.323 with a standard error of 0.026.  The 

difference between the two sets of estimates is that all coefficients vary over space with 

the CPAR model, including the coefficient for the log of building area.  The semi-

parametric model produces only a single estimate for the coefficient for the log of 

building area, but still yields 3705 estimates of the coefficients for all other variables.  

Comparable values for these estimates are 0.383 and 0.379 when the window size is 

increased to 100% in Table 5.  The estimates can be compared to the linear regression 

models of Table 3, in which the base estimated coefficient of 0.403 falls to 0.281 when 

the model includes census tract fixed effects.  The 25% window size produces results 

comparable to the fixed effects specification, while the 100% window size produces 

results similar to the linear model without fixed effects.  For the log of building area, the 

primary result of geographic disaggregation is to produce a lower value for the estimated 

marginal effect.   
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 The results are more sensitive to the specification for the locational variables – 

longitude, latitude, distance from the city center, distance from an EL Stop, and the 

dummy variables indicating that the observation is within a block of a rail line or an EL 

line.   This result should not be surprising.  By definition, the locational variables are 

themselves functions of the very geographic coordinates that determine distances 

between observations.  As the window size collapses toward zero, the locational variables 

come closer to being constants within the window of observations received positive 

weight at each target point.  This degeneracy leads to nearly perfect collinearity at small 

window sizes.  The same problem helps explain the sensitivity of these variables to the 

presence of census tract dummy variables in the fixed effects specification.  Broad spatial 

effects such as distance from the city center or distance from the nearest EL stop require 

fairly large window sizes in order to separate their effects from the effects of other spatial 

variables.   

 The Monte Carlo results suggested that the optimal window size is larger when 

the goal is to estimate marginal effects than when the objective is prediction.  In addition, 

the fact that small window sizes (or small neighborhoods) lead to highly variable results 

for locational variables suggests that still larger window sizes should be used when the 

goal is to estimate the marginal effects of locational variables than when the goal is to 

estimate the marginal effects of structural characteristics.  Thus, the 100% window size is 

likely preferable to the 25% window for estimating the marginal effect of a broad 

geographic variable such as distance to the city center or distance to the nearest El stop. 

 Based on the CPAR model with a 100% window size, the results for our primary 

variable of interest suggest that prices decline on average by nearly 17% per mile with 
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distance from the nearest EL stop.  The standard deviation for the mean coefficient for 

distance from the nearest EL stop is 0.028 and the Cleveland-Devlin (1988) F-test implies 

that the variable adds significant explanatory power to the regression.  The semi-

parametric result suggests that the magnitude of the marginal effect of this variable is 

lower at -10.9%, but still highly significant.  The reason for the difference between the 

two sets of estimates can be seen in Figure 6, which shows the estimated CPAR 

coefficients for the smaller, 25% window size.8  The coefficients are clearly negative for 

most observations north of the city center, meaning that prices are higher closer to the EL 

stops.  In accordance with the results of McMillen and McDonald (2004), the estimated 

coefficients are also negative along the line running southwest from the city center.  

Positive coefficients are confined to two areas – due south of the city center and on the 

west side.  Figure 7 presents a histogram showing the distribution of coefficients across 

all observations.  Though the number of negative coefficients is much higher than the 

number of positive coefficients, it is clear that the EL line is not an amenity everywhere. 

 The south and west sides of the Chicago are relatively low-income areas, and the 

areas near the EL stops tend to be blighted commercial areas with many vacant buildings.  

The map shows that combining all EL lines into the same sample produces a serious form 

of model misspecification.  This misspecification would not have been evident in the base 

linear specification.  Thus, an important advantage of nonparametric modeling is the 

information it provides for model testing.  In the case of Chicago’s EL, the coefficients 

on access to rail could be used to examine the influence of income, race/ethnicity, family 

size, labor force attachment, human capital, and other fundamental variables on the 

                                                 
8 The geographic variation in the coefficients shows up more clearly on the map when the window size is 
25%, but the 100% window-size results are similar. 
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demand for mass transit – research opportunities not generally possible using standard 

hedonic analysis. 

 When comparing the CPAR and linear results, note that nonparametric estimation 

does not use up an inordinate number of degrees of freedom even though the models are 

constructed by estimating separate WLS regressions for each observation.   With a 100% 

window size, only about 28 degrees of freedom are used to estimate a model that starts 

out with 18 explanatory variables.  Ten additional degrees of freedom produce an 

impressive degree of spatial variation in the estimated coefficients.  Even with the much 

smaller 25% window, the CPAR model uses far fewer degrees of freedom than the 

census tracts fixed effects models – 164 v. 483.  The commonly held impression that all 

nonparametric estimators lead to very high variances in models with more than one or 

two explanatory variables is simply wrong.  Many degrees of freedom are saved by 

taking advantage of the special nature of spatial data sets to include only distance in the 

kernel weight function and imposing – mechanically – smoothness in the surface of 

parameter estimates. 

 The second point to note when comparing CPAR and linear results is that the 

hypothesis tests provide virtually the same information.  The coefficient of a linear model 

can be interpreted as an estimate of the average marginal effect of an explanatory 

variable.  We have accomplished the same objective for nonparametric models by 

calculating sample averages for the CPAR model and by estimating semi-parametric 

versions of the models.  Cleveland and Devlin’s (1988) F-test is an effective way of 

summarizing a variables overall statistical significance.  The standard error for a semi-
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parametric estimate provides exactly the same information as its counterpart from a linear 

regression. 

 Finally, we have shown the economic relevance of the hedonic price surfaces.  

Rather than being an obstacle to interpretation, they are useful data on the spatial 

distribution of fundamentals and preferences that produce outcomes in housing markets.  

We have illustrated the spatial variation in the pricing of the access to rail service and 

suggested that there is a economic rationale for the asymmetric pricing that may serve as 

a far better input into the policy process that is asked to evaluate the social costs and 

benefits of public goods than a single population parameter.     

 

6. Conclusion 

Nonparametric estimation procedures can control for spatial variation in marginal 

effects while also allowing for nonlinearities.  Variants of the LWR procedure are easy to 

implement because they simply require repeated applications of standard WLS 

regressions.  Although the typical procedure involves a separate regression for each point 

in the data set, LWR procedures often use fewer degrees of freedom than regressions 

with neighborhood fixed effects.  The WLS regressions are simply a convenient way to 

construct the nonparametric estimates; the restrictions imposing continuity over 

neighboring observations are sufficient to conserve degrees of freedom.  Still fewer 

degrees of freedom are used when the model is conditionally parametric.  In the 

conditionally parametric version of LWR, the base model is linear conditional on the 

variables used to construct the WLS weights, but the coefficients can vary smoothly 

across nearby observations.  In spatial data sets, “nearby” has a natural geographic 
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interpretation, and the conditionally parametric model allows marginal effects to vary 

smoothly over space.  This spatial interpretation of the LWR estimator is sometimes 

referred to as “geographically weighted least squares,” although the term is unfortunate 

because it conceals the estimator’s relationship to more general procedures that can also 

be very useful in a spatial context. 

After illustrating the relationships among various LWR estimators analytically 

and in a set of Monte Carlo experiments, we demonstrate the usefulness of LWR 

estimation in a representative hedonic setting.  Using data on sales of single-family 

homes in Chicago for 2000, we find that the estimates of the marginal effects of such 

spatial variables as distance from the nearest EL stop are sensitive to the model 

specification.  Prices are estimated to decline significantly with distance to an EL stop 

when the parametric model only includes such broad measures of spatial trends as 

longitude, latitude, and distance from the city center.  Parametric neighborhood fixed 

effects or nonparametric LWR estimates reduce the level of significance substantially, 

and the marginal effect of distance to the nearest EL stop can be reduced to statistical 

insignificance if neighborhoods are defined narrowly.  This sensitivity of location 

variables to the neighborhood definition is shared by both parametric and LWR models. 

One of the advantages of LWR estimation comes at the next stage of determining 

why the estimates are sensitive to the neighborhood definition.  A map of the LWR 

coefficients for distance to the nearest EL stop reveals that proximity to the EL 

significantly increases sales prices on the north and southwest sides of the city.  In low-

income areas on the south and west sides, the EL is lined with vacant businesses and 

other depreciated structures.  Failure to account for these differences leads to an 
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underestimate of the value of proximity to the EL in higher-income areas.  Our empirical 

application also illustrates that hypothesis testing is not much more difficult in a 

nonparametric setting than in a conventional regression model.  Accurate approximations 

are available for F-tests that provide virtually the same information as a standard t-

statistic, and semiparametric models can be used to construct confidence intervals for the 

marginal effect of individual explanatory variables. 
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Table 1 

Degrees of Freedom 
 

Number of Explanatory Variables Window  
Size 1 2 3 4 5 6 

Conditionally Parametric Regression 
0.10 21.506 41.631 61.632 81.647 101.547 121.468 
0.20 11.298 21.236 31.125 41.023 50.948 60.854 
0.30 7.895 14.424 20.950 27.452 33.984 40.532 
0.40 6.194 11.011 15.849 20.667 25.498 30.355 
0.50 5.173 8.968 12.781 16.588 20.411 24.244 
0.60 4.494 7.610 10.744 13.872 17.018 20.161 
0.70 4.034 6.663 9.310 11.953 14.615 17.266 
0.80 3.721 5.989 8.270 10.552 12.855 15.141 
0.90 3.500 5.487 7.484 9.487 11.509 13.510 
1.00 3.310 5.072 6.844 8.620 10.416 12.191 

Kernel Regression 
0.10 21.158 47.353 94.265 177.495 302.917 481.661 
0.20 10.879 23.272 40.130 62.388 90.875 126.269 
0.30 7.637 15.795 25.049 35.348 47.412 61.060 
0.40 5.763 11.603 17.800 24.508 31.759 39.509 
0.50 4.796 9.400 14.147 19.133 24.379 29.856 
0.60 4.230 8.027 11.847 15.791 19.865 24.050 
0.70 3.581 6.632 9.679 12.775 15.930 19.151 
0.80 3.208 5.818 8.421 11.048 13.704 16.408 
0.90 2.948 5.236 7.519 9.813 12.121 14.470 
1.00 2.753 4.794 6.825 8.863 10.911 12.987 
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Table 2 
Descriptive Statistics 

 
 Mean Std. Dev.Minimum Maximum 
Sales Price 223250 169333 20000 1015000 
Building area (s.f.) 1365 608 402 10041 
Land area (s.f.) 3533 1358 478 18326 
Log of sales price 12.070 0.710 9.903 13.830 
Log of building area 7.142 0.376 5.996 9.214 
Log of land area 8.087 0.441 6.170 9.816 
Age of Structure 69.979 35.091 1 138 
Rooms 5.744 1.593 3 15 
Bedrooms 2.923 0.851 1 8 
Bathrooms 1.506 0.704 1 8 
Brick exterior 0.552 0.497 0 1 
Fireplace 0.170 0.375 0 1 
Central air conditioning 0.283 0.451 0 1 
Garage 0.307 0.461 0 1 
Within a block of a rail line 0.256 0.436 0 1 
Distance from city center (miles) 6.960 2.613 0.849 12.699 
With a block of an EL line 0.099 0.299 0 1 
Distance from EL stop 0.553 0.251 0.015 1.000 
Longitude -87.69808 0.05087 -87.83994 -87.58022 
Latitude 41.87923 0.08589 41.69902 42.01892 

 
Note.  The data set comprise 3705 sales of single-family residential homes in 
Chicago for 2000. 
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Table 3 
Linear Regression Results 

 
 Model 1 Model 2 
 Coef. Std. Err. P-value Coef. Std. Err. P-value 
Log of building area 0.403 0.034 0.000 0.281 0.025 0.000 
Log of land area 0.186 0.024 0.000 0.264 0.019 0.000 
Age of Structure -0.002 0.0003 0.000 -0.001 0.0002 0.020 
Rooms 0.021 0.009 0.015 -0.001 0.006 0.915 
Bedrooms -0.024 0.015 0.097 0.015 0.010 0.133 
Bathrooms 0.030 0.017 0.073 -0.008 0.012 0.491 
Brick exterior 0.093 0.016 0.000 0.026 0.012 0.036 
Fireplace 0.179 0.024 0.000 0.022 0.018 0.218 
Central air conditioning 0.136 0.021 0.000 0.032 0.015 0.027 
Garage 0.027 0.016 0.082 0.025 0.011 0.021 
Within a block of a rail line -0.007 0.018 0.708 0.030 0.015 0.054 
Distance from city center -0.032 0.004 0.000 0.028 0.040 0.481 
With a block of an EL line 0.006 0.029 0.831 -0.019 0.025 0.453 
Distance from EL stop -0.137 0.033 0.000 -0.044 0.041 0.291 
Longitude 1.644 0.213 0.000 1.978 2.242 0.378 
Latitude 4.512 0.118 0.000 1.340 2.295 0.559 
Constant -36.864 15.863 0.020 125.096 218.592 0.567 
R2 0.631 0.870 
Degrees of freedom 17 483 
 
Notes.  Model 1 is the base specification.  Model 2 adds 466 census tract fixed effects to 
the model.  The F-statistic for the fixed effects is F(466, 3222) = 12.629, with a p-value 
of 0.000. 
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Table 4 
 

CPAR Results: 
Window Size = 25% 

 
 Nonparametric Semi-parametric 
 Mean Non-

Param. 
Std. 
Dev. 

F-Test P-
Value 

Semi-
Param. 

Std. 
Err. 

P-
Value 

Log of  
building area 

0.315 0.088 16.527 0.000 0.323 0.026 0.000 

Log of land area 0.216 0.096 13.851 0.000 0.219 0.020 0.000 
Age of Structure -0.002 0.002 13.893 0.000 -0.001 0.0002 0.000 
Rooms 0.004 0.019 1.441 0.149 0.001 0.007 0.923 
Bedrooms -0.006 0.028 1.548 0.108 -0.004 0.011 0.734 
Bathrooms 0.030 0.066 3.400 0.000 0.020 0.013 0.115 
Brick exterior 0.035 0.055 3.723 0.000 0.039 0.013 0.002 
Fireplace 0.065 0.078 4.567 0.000 0.081 0.019 0.000 
Central air 
conditioning 

0.054 0.061 2.811 0.001 0.047 0.016 0.003 

Garage 0.031 0.037 2.051 0.020 0.030 0.012 0.012 
Within a block  
of a rail line 

-0.019 0.049 2.437 0.007 -0.017 0.014 0.226 

Distance from city 
center 

-0.346 0.522 31.118 0.000 -0.058 0.030 0.050 

With a block  
of an EL line 

0.001 0.076 1.052 0.396 -0.028 0.023 0.236 

Distance from EL 
stop 

-0.049 0.147 4.533 0.000 -0.016 0.026 0.545 

Longitude -7.678 15.171 25.380 0.000 5.010 0.952 0.000 
Latitude 17.069 31.251 45.034 0.000 9.758 1.124 0.000 
R2 0.825  
Degrees of 
freedom 

164.144 141.024 

 
Notes.  The semi-parametric estimates are the values from individually estimated models.  
The degrees for freedom for the semi-parametric models are the average across the 
estimated models.    
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Table 5 
 

CPAR Results: 
Window Size = 100% 

 
 Nonparametric Semi-parametric 
 Mean Non-

Param. 
Std. 
Dev. 

F-Test P-
Value 

Semi-
Param. 

Std. 
Err. 

P-
Value 

Log of  
building area 

0.383 0.042 82.489 0.000 0.379 0.033 0.000 

Log of land area 0.175 0.015 35.027 0.000 0.176 0.023 0.000 
Age of Structure -0.002 0.001 78.685 0.000 -0.002 0.0003 0.000 
Rooms 0.028 0.012 6.705 0.002 0.017 0.008 0.046 
Bedrooms -0.029 0.008 2.094 0.128 -0.024 0.014 0.090 
Bathrooms 0.019 0.019 8.242 0.001 0.040 0.016 0.014 
Brick exterior 0.087 0.022 24.617 0.000 0.088 0.015 0.000 
Fireplace 0.179 0.004 31.570 0.000 0.172 0.023 0.000 
Central air 
conditioning 

0.152 0.010 17.432 0.000 0.121 0.020 0.000 

Garage 0.028 0.002 3.024 0.053 0.039 0.015 0.010 
Within a block  
of a rail line 

-0.013 0.005 0.708 0.477 -0.014 0.017 0.424 

Distance from city 
center 

-0.029 0.017 74.598 0.000 -0.018 0.004 0.000 

With a block  
of an EL line 

0.009 0.012 0.026 0.956 0.011 0.028 0.699 

Distance from EL 
stop 

-0.169 0.028 7.056 0.001 -0.109 0.032 0.001 

Longitude 1.832 0.468 72.654 0.000 2.181 0.275 0.000 
Latitude 4.641 0.199 1455.817 0.000 5.545 0.156 0.000 
R2 0.667  
Degrees of 
freedom 

28.254 27.603 

 
Notes.  The semi-parametric estimates are the values from individually estimated models.  
The degrees for freedom for the semi-parametric models are the average across the 15 
estimated models.    
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Figure 1 
LWR with GCV Window Size 
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Figure 2 
Alternative Kernels 
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Figure 3 
Alternative Window Sizes 
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Figure 4 
Marginal Effects 
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Figure 5 
 

Fixed Effects Model 
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Figure 6 
Estimated CPAR Coefficients for Distance from the Nearest EL Stop 
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Figure 7 
The Distribution of Estimated Coefficients for Distance from the Nearest El Stop 
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